Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
lfa:2025:lab01 [2025/10/05 23:39]
tpruteanu
lfa:2025:lab01 [2025/10/07 12:02] (current)
tpruteanu
Line 37: Line 37:
  
 **2.1.3.** The language of binary words which contain **exactly** two ones. **2.1.3.** The language of binary words which contain **exactly** two ones.
- 
  
 /​*<​hidden>​ /​*<​hidden>​
Line 50: Line 49:
 **2.1.4.** (*) The language of words which encode binary numbers divisible by 3. **2.1.4.** (*) The language of words which encode binary numbers divisible by 3.
  
-**2.1.5.** (* *) The language of words which encode binary numbers divisible by 3, represent ​in reverse order (the least significant digit is first).+**2.1.5.** (* *) The language of words which encode binary numbers divisible by 3, represented ​in reverse order (the least significant digit is first).
  
 **2.1.6.** (*) The language of quaternary words (base 4), that follow the rule that every zero is immediately followed by a sequence of at least 2 consecutive threes and every one is immediately followed by a sequence of at most 2 consecutive twos. **2.1.6.** (*) The language of quaternary words (base 4), that follow the rule that every zero is immediately followed by a sequence of at least 2 consecutive threes and every one is immediately followed by a sequence of at most 2 consecutive twos.
  
-**2.1.7.** The set of all binary ​strings ​having the substring 00101.+**2.1.7.** The language ​of all binary ​words having the substring 00101.
  
 /​*<​hidden>​ /​*<​hidden>​
Line 61: Line 60:
   * Analyze how each incoming character changes the current available sequence. For example, if we are in state **E** and we read character **1** we reach a final state, but if we read **0** we go back to state **C** since the available seq will be **00** ​   * Analyze how each incoming character changes the current available sequence. For example, if we are in state **E** and we read character **1** we reach a final state, but if we read **0** we go back to state **C** since the available seq will be **00** ​
 </​hidden>​*/​ </​hidden>​*/​
 +
 +**2.1.8.** The language of binary words that start and end with different digits.
  
 /​*<​hidden>​ /​*<​hidden>​
Line 78: Line 79:
  
 **2.2.1** **2.2.1**
 +
 +{{:​lfa:​2024:​lab1-2_2_2.png?​300|}}
 +/* Cel puțin un grup de: 0 urmat de un număr impar de 1-uri urmat de un număr par de 0-uri */
 +
 +**2.2.2**
  
 {{:​lfa:​2024:​lab1-2_2_1.png?​500|}} {{:​lfa:​2024:​lab1-2_2_1.png?​500|}}
 /* Cuvinte nevide în care după un grup de 0-uri consecutive urmează fie nimic, fie un număr impar de 1-uri consecutive, ​ /* Cuvinte nevide în care după un grup de 0-uri consecutive urmează fie nimic, fie un număr impar de 1-uri consecutive, ​
    și după un grup consecutiv de 1-uri urmează fie nimic, fie un număr par de 0-uri consecutive */    și după un grup consecutiv de 1-uri urmează fie nimic, fie un număr par de 0-uri consecutive */
- 
-**2.2.2** 
- 
-{{:​lfa:​2024:​lab1-2_2_2.png?​300|}} 
-/* Cel puțin un grup de: 0 urmat de un număr impar de 1-uri urmat de un număr par de 0-uri */ 
  
 **2.2.3** **2.2.3**
Line 110: Line 111:
    iar dacă începe cu b. prima secvență este de al doilea tip */    iar dacă începe cu b. prima secvență este de al doilea tip */
        
 +
 ---- ----
  
  
 +**2.3.1** What happens if we switch all final states to non-final states and vice-versa in a DFA?
 +
 +**2.3.2** Prove that if L(M) is infinite, there has to be some cycle in the states graph, such that there is a path from the initial state to the cycle, and from the cycle to a final state.
 +
 +**2.3.3** If no such cycle described above exist, L(M) is finite.
 +
 +**2.3.4** Show that if you can construct a DFA to accept L, than you can also construct a DFA to accept $ L \cup \{a\}, \forall a \in \Sigma $.