Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
lfa:2024:lab11 [2026/01/18 17:53]
cata_chiru
lfa:2024:lab11 [2026/01/18 17:55] (current)
cata_chiru
Line 149: Line 149:
 1. **Basis**:  ​ 1. **Basis**:  ​
  
-In zero steps, we have \( A \Rightarrow{0}_G A \iff A \Rightarrow{0}_H A \) $.+In zero steps, we have \( A \to^{0}_G A \iff A \to^{0}_H A \).
  
 2. **Induction**:  ​ 2. **Induction**:  ​
-Assuming ​\( A \Rightarrow{*}_G w_1 B w_2 \iff A \Rightarrow{*}_H w_2^R B w_1^R \) $,  ​+Assuming \( A \to^{*}_G w_1 B w_2 \iff A \to^{*}_H w_2^R B w_1^R \),  ​
  
-we can apply any production ​\( B \to u \) in \( G \) (and in \( H \) in reverse) and obtain:  ​+we can apply any production \( B \to u \) in \( G \) (and in \( H \) in reverse) and obtain:  ​
  
-\( A \rightarrow^{*}_G w_1 u w_2 \) +\( A \to^{*}_G w_1 u w_2 \)  
 + 
 +\( A \to^{*}_H w_2^R u^R w_1^R \),   where indeed \( w_2^R u^R w_1^R \) is the reverse of \( w_1 u w_2 \).
  
-$ \( A \rightarrow^{*}_H w_2^R u^R w_1^R \) $,   where indeed $ \( w_2^R u^R w_1^R \) $ is the reverse of $ \( w_1 u w_2 \) $. 
 </​hidden>​ </​hidden>​