Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
lfa:2024:lab08 [2024/11/25 03:05] cata_chiru created |
lfa:2024:lab08 [2024/11/28 01:33] (current) stefan.sterea Corrected pumping lemma formulation |
||
---|---|---|---|
Line 4: | Line 4: | ||
** Pumping Lemma ** | ** Pumping Lemma ** | ||
- | Let L be an infinite regular language. Then, for $\forall w \in L$, $\exists n \in \mathbf{N}$, $ |w| \ge n $, $ w = xyz $, $ |xy| \le n $ and $ y \neq \varepsilon $, such that $ \forall k \ge 0, w_{k} = xy^{k}z \in L$. | + | Let L be an infinite regular language. Then, $\exists n \in \mathbb{N}$: $ \forall w\ \ \text{s.t.}\ \ |w| \ge n $, $ w = xyz $, $ |xy| \le n $ and $ y \neq \varepsilon $, such that $ \forall k \ge 0, w_{k} = xy^{k}z \in L$. |
</note> | </note> | ||
Line 11: | Line 11: | ||
** Complement of Pumping Lemma ** | ** Complement of Pumping Lemma ** | ||
- | Let L be an infinite language. If $\forall n \in \mathbf{N}$, $\exists w_{n} \in L $ with $ |w| \ge n $ such that regardless of how $ w_{n} $ is split into $ w_{n} = xyz $ with $ |xy| \le n $ and $ y \neq \varepsilon $, $\exists k \ge 0 $ such that $ w_{n} = xy^{k}z \notin L $, then L in **not** a regular language. | + | Let L be an infinite language. If $\forall n \in \mathbb{N}$, $\exists w_{n} \in L $ with $ |w| \ge n $ such that regardless of how $ w_{n} $ is split into ($ \forall x, y, z \in \Sigma^* $) $ w_{n} = xyz $ with $ |xy| \le n $ and $ y \neq \varepsilon $, $\exists k \ge 0 $ such that $ w_{n} = xy^{k}z \notin L $, then L in **not** a regular language. |
</note> | </note> |