Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
lfa:2022:lab10-cfl_2 [2022/12/10 13:50] alexandra.udrescu01 |
lfa:2022:lab10-cfl_2 [2022/12/29 00:59] (current) alexandra.udrescu01 |
||
---|---|---|---|
Line 6: | Line 6: | ||
- describe L(G) \\ | - describe L(G) \\ | ||
- algoritmically construct a PDA that accepts the same language \\ | - algoritmically construct a PDA that accepts the same language \\ | ||
+ | - run the PDA on the given inputs \\ | ||
- is the grammar ambiguous? If yes, write a non ambiguous grammar that generates the same language \\ | - is the grammar ambiguous? If yes, write a non ambiguous grammar that generates the same language \\ | ||
- | **10.1.1** \\ | ||
- | $ S \leftarrow aS | aSb | \epsilon $ | ||
- | **10.1.2** \\ | + | **10.1.1** input: aaaabb \\ |
- | $ S \leftarrow aAA \\ A → aS | bS | a $ | + | $ S \leftarrow aS | aSb | \epsilon $ \\ |
+ | |||
+ | |||
+ | |||
+ | <hidden Solution> | ||
+ | The start symbol of the PDA is S. \\ The PDA will only have one state q and it will accept via empty stack. \\ | ||
+ | For each nonterminal/rule $ A \leftarrow \gamma $ add a transition **q ---$(\epsilon, A/ \gamma)$--➤ q** and for each terminal c add **q ---$(c, c/ \epsilon)$--➤ q** | ||
+ | |||
+ | Thus, our PDA has the following transitions looping on state q: | ||
+ | * $ \epsilon, S/aS $ | ||
+ | * $ \epsilon, S/aSb $ | ||
+ | * $ \epsilon, S/\epsilon $ | ||
+ | * $ a, a/\epsilon $ | ||
+ | * $ b, b/\epsilon $ | ||
+ | |||
+ | Input: aaabb \\ (aaabb, q, S) => (**a**aabb, q, **a**Sb) => (aabb, q, Sb) => (**a**abb, q, **a**Sbb) => (abb, q, Sbb) => (**a**bb, q, **a**Sbb) => (bb, q, Sbb) => (bb, q, bb) => (b, q, b) => ($\epsilon$, q, $\epsilon$) \\ | ||
+ | \\ | ||
+ | Is the grammar ambiguuous? yes, because there exist 2 different left-derivations for word aaabb \\ S => aSb => aaSbb => aaaSbb => aaabb \\ S => aS => aaSb => aaaSbb => aaabb \\ | ||
+ | \\ | ||
+ | The accepted language is $ L(G) = \{a^{m}b^{n} | m \ge n \ge 0\} $ \\ | ||
+ | \\ | ||
+ | Repaired grammar: \\ $ S \leftarrow aS | A \\ A \leftarrow aAb | \epsilon $ | ||
+ | </hidden> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | **10.1.2** input: xayxcayatabcazz \\ | ||
+ | |||
+ | |||
+ | |||
+ | $ S \leftarrow a | xAz | SbS | cS \\ A \leftarrow SyS | SyStS $ | ||
+ | |||
+ | |||
+ | |||
+ | <hidden Solution> | ||
+ | The PDA has the following transitions looping on state q: | ||
+ | * $ \epsilon, S/a $ | ||
+ | * $ \epsilon, S/xAz $ | ||
+ | * $ \epsilon, S/SbS $ | ||
+ | * $ \epsilon, S/cS $ | ||
+ | * $ \epsilon, A/SyS $ | ||
+ | * $ \epsilon, A/SyStS $ | ||
+ | * $ a, a/\epsilon $ | ||
+ | * $ b, b/\epsilon $ | ||
+ | * $ c, c/\epsilon $ | ||
+ | * $ x, x/\epsilon $ | ||
+ | * $ y, y/\epsilon $ | ||
+ | * $ z, z/\epsilon $ | ||
+ | * $ t, t/\epsilon $ | ||
+ | Input: xayxcayatabcazz \\ (xayxcayatabcazz, q, S) => (xayxcayatabcazz, q, xAz) => (ayxcayatabcazz, q, Az) => (ayxcayatabcazz, q, SySz) => (ayxcayatabcazz, q, aySz) => (yxcayatabcazz, q, ySz) => (xcayatabcazz, q, Sz) => (xcayatabcazz, q, xAzz) => (cayatabcazz, q, Azz) => (cayatabcazz, q, SyStSzz) => (cayatabcazz, q, cSyStSzz) => (ayatabcazz, q, SyStSzz) => (ayatabcazz, q, ayStSzz) => (yatabcazz, q, yStSzz) => (atabcazz, q, StSzz) => (atabcazz, q, StSzz) => (atabcazz, q, atSzz) => (tabcazz, q, tSzz) => (abcazz, q, Szz) => (abcazz, q, SbSzz) => (abcazz, q, abSzz) => (bcazz, q, bSzz) => (cazz, q, Szz) => (cazz, q, cSzz) => (azz, q, Szz) => (azz, q, azz) => (zz, q, zz) => (z, q, z) => ($\epsilon$, q, $\epsilon$)\\ | ||
+ | \\ | ||
+ | Is the grammar ambiguuous? yes because of word ababa that has 2 different left-derivations \\ S => SbS => abS => abSbS => ababS => ababa \\ S => SbS => SbSbS => abSbS => ababS => ababa \\ | ||
+ | \\ | ||
+ | It is hard to directly explain the language in this form. Another form may be easier. Let's relabel the terminals: a => bool; b => and; c => not; x => if; y => then; z => fi; t => else.\\ | ||
+ | The grammar becomes: $ S \leftarrow bool | if A fi | S and S | not S \\ A \leftarrow S then S | S then S else S $\\ | ||
+ | The language generated can be described as the language of boolean expressions (considering 'bool' is either a variable or a literal) with the operations 'and', 'not', 'if-then' and 'if-then-else'. | ||
+ | \\ | ||
+ | Why is it ambigous? The 'and'/b operator does not define its associativity, and the operators 'and'/b and 'not'/c do not have a clear precedence rule.\\ | ||
+ | To fix this grammar we will use the following conventions: ababa == (aba)ba and caba == (ca)ba \\ | ||
+ | Repaired grammar: \\ | ||
+ | $ S \leftarrow TbS | T \\ T \leftarrow cT | xAz | a \\ A \leftarrow SyS | SyStS $ \\ | ||
+ | </hidden> | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | **10.1.3** input: aaabbbbbccc \\ | ||
+ | |||
+ | $ S \leftarrow ABC \\ A \leftarrow aA | \epsilon \\ B \leftarrow bbB | b \\ C \leftarrow cC | c $ | ||
+ | |||
+ | |||
+ | |||
+ | |||
+ | <hidden Solution> | ||
+ | The PDA has the following transitions looping on state q: | ||
+ | * $ \epsilon, S/ABC $ | ||
+ | * $ \epsilon, A/aA $ | ||
+ | * $ \epsilon, A/\epsilon $ | ||
+ | * $ \epsilon, B/bbB $ | ||
+ | * $ \epsilon, B/b $ | ||
+ | * $ \epsilon, C/cC $ | ||
+ | * $ \epsilon, C/c $ | ||
+ | * $ a, a/\epsilon $ | ||
+ | * $ b, b/\epsilon $ | ||
+ | * $ c, c/\epsilon $ | ||
+ | |||
+ | Input: aaabbbbbccc \\ (aaabbbbbccc, q, S) => (aaabbbbbccc, q, ABC) => (aaabbbbbccc, q, aABC) => (aabbbbbccc, q, ABC) => | ||
+ | => (aabbbbbccc, q, aABC) => (abbbbbccc, q, ABC) => (aabbbbbccc, q, ABC) => (aabbbbbccc, q, aABC) => => (abbbbbccc, q, ABC) => => (abbbbbccc, q, aABC) => (bbbbbccc, q, ABC) | ||
+ | => (bbbbbccc, q, BC) => (bbbbbccc, q, bbBC) => (bbbbccc, q, bBC) => (bbbccc, q, BC) => (bbbccc, q, bbBC) => (bbccc, q, bBC) => (bccc, q, BC) => (bccc, q, bC) | ||
+ | => (ccc, q, C) => (ccc, q, cC) => (cc, q, C) => (cc, q, cC) => (c, q, C) => (c, q, c) => ($\epsilon$, q, $\epsilon$) \\ | ||
+ | \\ | ||
+ | Is the grammar ambiguuous? no \\ | ||
+ | \\ | ||
+ | The accepted language is $ L(G) = \{a^{m}b^{2n + 1}c^{p+1} | m,n,p \ge 0\} $ \\ | ||
+ | </hidden> | ||
- | **10.1.3** \\ | ||
- | $ S \leftarrow ABC \\ A \leftarrow aA | \epsilon \\ B \leftarrow bbB | b \\ C \leftarrow cC | c $ | ||
===== 10.2. Lexer Spec ===== | ===== 10.2. Lexer Spec ===== | ||
Line 22: | Line 115: | ||
* NO_CONSEC_ONE: $ (1 | \epsilon)(01 | 0)* $ | * NO_CONSEC_ONE: $ (1 | \epsilon)(01 | 0)* $ | ||
Separate the following input strings into lexemes: | Separate the following input strings into lexemes: | ||
+ | * 010101 | ||
+ | |||
+ | |||
+ | |||
+ | <hidden> | ||
+ | Although the entire string is matched by PAIRS and NO_CONSEC_ONE, PAIRS is defined first, thus it will be the first picked. \\ | ||
+ | PAIRS "010101" | ||
+ | |||
+ | |||
+ | </hidden> | ||
+ | |||
+ | |||
* 1010101011 | * 1010101011 | ||
+ | |||
+ | |||
+ | <hidden> | ||
+ | First we have a maximal match on "101010101" for regex NO_CONSEC_ONE. The remaining string, "1", is matched by both ONES and NO_CONSEC_ONE, but ONES is defined first. \\ | ||
+ | NO_CONSEC_ONE "101010101" \\ ONES "1" | ||
+ | </hidden> | ||
+ | |||
+ | |||
* 01110101001 | * 01110101001 | ||
+ | |||
+ | |||
+ | <hidden> | ||
+ | PAIRS "01" \\ | ||
+ | ONES "11" \\ | ||
+ | NO_CONSEC_ONES "0101001" | ||
+ | </hidden> | ||
+ | |||
+ | |||
* 01010111111001010 | * 01010111111001010 | ||
+ | |||
+ | |||
+ | <hidden> | ||
+ | PAIRS "010101" \\ | ||
+ | ONES "11111" \\ | ||
+ | NO_CONSEC_ONES "001010" | ||
+ | </hidden> | ||
+ | |||
+ | |||
* 1101101001111100001010011001 | * 1101101001111100001010011001 | ||
+ | |||
+ | |||
+ | <hidden> | ||
+ | ONES "11" | ||
+ | PAIRS "01101001" \\ | ||
+ | ONES "1111" \\ | ||
+ | NO_CONSEC_ONES "0000101001" \\ | ||
+ | PAIRS "1001" | ||
+ | </hidden> | ||