Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
lfa:2022:lab09-cfl [2022/12/04 20:16] alexandra.udrescu01 |
lfa:2022:lab09-cfl [2022/12/17 11:05] (current) alexandra.udrescu01 |
||
|---|---|---|---|
| Line 10: | Line 10: | ||
| <hidden> | <hidden> | ||
| <note important> | <note important> | ||
| - | + | $ S \leftarrow ASA | BSB | A | B | \epsilon $ | |
| - | S $ \leftarrow $ A S A | B S B | A | B | $ \varepsilon $ | + | |
| </note> | </note> | ||
| + | {{ :lfa:2022:lfa2022_lab9_1_1.png?400 |}} | ||
| </hidden> | </hidden> | ||
| + | |||
| + | |||
| **9.1.2.** $ L = \{ A^{m} B^{m+n} C^{n} \ | \: n, m \geq 0 \} $ | **9.1.2.** $ L = \{ A^{m} B^{m+n} C^{n} \ | \: n, m \geq 0 \} $ | ||
| - | <hidden> | ||
| - | <note important> | ||
| - | S $ \leftarrow $ X Y | ||
| - | X $ \leftarrow $ A X B | $ \varepsilon $ | ||
| - | Y $ \leftarrow $ B Y C | $ \varepsilon $ | + | <hidden> |
| + | <note important> | ||
| + | $ S \leftarrow XY $ \\ | ||
| + | $ X \leftarrow AXB | \epsilon $ \\ | ||
| + | $ Y \leftarrow BYC | \epsilon $ | ||
| </note> | </note> | ||
| + | {{ :lfa:2022:lfa2022_lab9_1_4.png?400 |}} | ||
| </hidden> | </hidden> | ||
| + | |||
| + | |||
| **9.1.3.** $ L = \{w \in \{a, b\}^* | \#_a(w) = \#_b(w) \} $ | **9.1.3.** $ L = \{w \in \{a, b\}^* | \#_a(w) = \#_b(w) \} $ | ||
| + | |||
| + | |||
| <hidden> | <hidden> | ||
| <note warning> | <note warning> | ||
| - | S $ \leftarrow $ a B S | b a S | $ \varepsilon $ | + | Try #1:\\ |
| + | $ S \leftarrow abS | baS | \epsilon $ \\ | ||
| + | incomplete because of: “aabb” \\ | ||
| + | Try #2:\\ | ||
| + | $ S \leftarrow aSb | bSa | SS | \epsilon $ \\ | ||
| + | incomplete because of: “abab” | ||
| + | </note> | ||
| - | ambiguuous because of: “ababab” | + | **Solution 1:** |
| + | We can either generate one ''a'' followed by one ''b'', as well as one ''b'' followed by one ''a''. At the same time, other sequences of equal number of a and b can appear freely, hence one solution is: | ||
| + | $math[S \leftarrow aSbS \mid bSaS \mid \epsilon] | ||
| + | /* | ||
| + | **Solution 2:** | ||
| - | S $ \leftarrow $ a S b | b S a | S S | $ \varepsilon $ | + | <note important> |
| - | + | **Idea:** A = rule that promises that exactly one letter 'a' is extra; B = rule that promises that exactly one letter 'b' is extra \\ | |
| - | ambiguuous because of: “abab” | + | $ S \leftarrow aBS | bAS | \epsilon $ \\ |
| + | $ A \leftarrow a | bAA $ \\ | ||
| + | $ B \leftarrow b | aBB $ | ||
| </note> | </note> | ||
| + | {{ :lfa:2022:lfa2022_lab9_1_3.png?300 |}} | ||
| - | <note important> | + | We can easily check by induction (over the length of the derivation sequence) that $math[A \Rightarrow^* w] iff $math[\#_A(w) = 1 + \#_B(w)]. |
| + | The basis case (length 1) is straightforward as $math[A \Rightarrow a]. Now suppose $math[A \Rightarrow bAA \Rightarrow^* bw_1w_2]. By induction hypothesis: $math[\#_A(bw_1w_2) = \#_A(w_1) + \#_A(w_2) = \#_B(w_1) + 1 + \#_B(w_2) + 1 = \#_B(bw_1w_2)+1]. | ||
| + | */ | ||
| + | </hidden> | ||
| - | **Idea:** A = rule that promises that one letter 'a' should come without a pair; B = rule that promises that one letter 'b' should come without a pair | ||
| - | S $ \leftarrow $ a B S | b A S | $ \varepsilon $ | ||
| - | |||
| - | A $ \leftarrow $ a | b A A | ||
| - | |||
| - | B $ \leftarrow $ b | a B B | ||
| - | |||
| - | |||
| - | |||
| - | </note></hidden> | ||
| **9.1.4.** $ L = \{w \in \{a, b\}^* | \#_a(w) \neq \#_b(w) \} $ | **9.1.4.** $ L = \{w \in \{a, b\}^* | \#_a(w) \neq \#_b(w) \} $ | ||
| + | |||
| <hidden> | <hidden> | ||
| + | /* | ||
| + | Solution 1: | ||
| <note important> | <note important> | ||
| - | S $ \leftarrow $ A | B | + | $ S \leftarrow A | B $ \\ |
| + | $ A \leftarrow G |GA $ \\ | ||
| + | $ B \leftarrow H | HB $ \\ | ||
| + | $ G \leftarrow Ea $ \\ | ||
| + | $ H \leftarrow Eb $ \\ | ||
| + | $ E \leftarrow aME | bNE | \epsilon $ \\ | ||
| + | $ M \leftarrow b | aMM $ \\ | ||
| + | $ N \leftarrow a | bNN $ \\ | ||
| + | Non-terminal E generates words with the same number of 'a' and 'b', as it was presented in the previous exercise. \\ | ||
| + | Non-terminal A generates words that have more "a", while B generates words with fewer "a". \\ Then S generates words with either more, or fewer 'a' than 'b'. | ||
| + | </note> | ||
| + | {{ :lfa:2022:lfa2022_lab9_1_4.png?400 |}} | ||
| - | A $ \leftarrow $ G |G G | + | Solution 2: |
| + | */ | ||
| + | Start with a grammar that generates $math[L_= = \{w \in \{a, b\}^* | \#_a(w) = \#_b(w) \}], for instance $math[S \leftarrow aSbS | bSaS | \epsilon]. Next, we generate two grammars, one for $math[L_> = \{w \in \{a, b\}^* | \#_a(w) > \#_b(w) \}], and another for $math[L_< = \{w \in \{a, b\}^* | \#_a(w) < \#_b(w) \}], and we can combine them into our response. We illustrate writing a rule for the former. | ||
| - | B $ \leftarrow $ H | H H | + | The language $math[L_>] can be described by the following language operations: $math[L_> = L_=(\{a\}L_=)^+]. Note that $math[\epsilon] is member of $math[L_=]. If $math[S] is the start symbol for $math[L_=], then our grammar is: $math[S_> \leftarrow SaST, T \leftarrow aST | \epsilon]. |
| - | G $ \leftarrow $ E a | + | </hidden> |
| - | H $ \leftarrow $ E b | ||
| - | E $ \leftarrow $ a M E | b N E | $ \varepsilon $ | ||
| - | M $ \leftarrow $ b | a M M | + | **9.1.5.** $ L = \{a^ib^jc^k | i = j \lor j = k \} $ \\ |
| - | N $ \leftarrow $ a | b N N | ||
| - | </note> | ||
| - | </hidden> | ||
| - | |||
| - | **9.1.5.** $ L = \{a^ib^jc^k | i = j \lor j = k \} $ \\ | ||
| <hidden> | <hidden> | ||
| Line 87: | Line 108: | ||
| $ S \leftarrow X | Y $ \\ | $ S \leftarrow X | Y $ \\ | ||
| $ X \leftarrow ZC $ \\ | $ X \leftarrow ZC $ \\ | ||
| - | $ Z \leftarrow aZb | \varepsilon $ \\ | + | $ Z \leftarrow aZb | \epsilon $ \\ |
| - | $ C \leftarrow cC | \varepsilon $ \\ | + | $ C \leftarrow cC | \epsilon $ \\ |
| $ Y \leftarrow AT $ \\ | $ Y \leftarrow AT $ \\ | ||
| - | $ A \leftarrow aA | \varepsilon $ \\ | + | $ A \leftarrow aA | \epsilon $ \\ |
| - | $ T \leftarrow bTc | \varepsilon $ | + | $ T \leftarrow bTc | \epsilon $ \\ |
| </note> | </note> | ||
| + | {{ :lfa:2022:lfa2022_lab9_1_5.png?600 |}} | ||
| </hidden> | </hidden> | ||
| + | |||
| + | |||
| ===== 9.2. Ambiguous grammars ===== | ===== 9.2. Ambiguous grammars ===== | ||
| Line 104: | Line 128: | ||
| $ A \leftarrow aA | B $ \\ | $ A \leftarrow aA | B $ \\ | ||
| $ B \leftarrow bB | \epsilon $ | $ B \leftarrow bB | \epsilon $ | ||
| + | |||
| + | |||
| <hidden> | <hidden> | ||
| Line 115: | Line 141: | ||
| Repaired, unambiguous grammar: | Repaired, unambiguous grammar: | ||
| - | $ S \leftarrow A $ \\ | + | $ S \leftarrow A $ \\ |
| $ A \leftarrow aA | B $ \\ | $ A \leftarrow aA | B $ \\ | ||
| - | $ B \leftarrow bB | \epsilon $ | + | $ B \leftarrow bB | \epsilon $ |
| </note> | </note> | ||
| </hidden> | </hidden> | ||
| + | |||
| + | |||
| **9.2.2.** | **9.2.2.** | ||
| Line 128: | Line 156: | ||
| $ A \leftarrow 0A1 | 01 | B $\\ | $ A \leftarrow 0A1 | 01 | B $\\ | ||
| $ B \leftarrow B1 | \epsilon $ | $ B \leftarrow B1 | \epsilon $ | ||
| + | |||
| Line 137: | Line 166: | ||
| Repaired: \\ | Repaired: \\ | ||
| - | $ S \leftarrow AS | \epsilon $ \\ | + | $ S \leftarrow 1BS' | S' $ \\ |
| - | $ A \leftarrow 0A’1B $ \\ | + | $ S' \leftarrow ABS' | \epsilon $ \\ |
| - | $ A’ \leftarrow 0A’1 | \epsilon $ \\ | + | $ A \leftarrow 0A1 | 01 $ \\ |
| $ B \leftarrow B1 | \epsilon $ | $ B \leftarrow B1 | \epsilon $ | ||
| </note></hidden> | </note></hidden> | ||
| + | |||
| + | |||
| **9.2.3.** | **9.2.3.** | ||
| Line 150: | Line 181: | ||
| $ A \leftarrow aA | \epsilon $\\ | $ A \leftarrow aA | \epsilon $\\ | ||
| $ B \leftarrow bB | \epsilon $ | $ B \leftarrow bB | \epsilon $ | ||
| + | |||
| Line 158: | Line 190: | ||
| * S ⇒ ASB ⇒ SB ⇒ B ⇒ $ \epsilon $ | * S ⇒ ASB ⇒ SB ⇒ B ⇒ $ \epsilon $ | ||
| + | The grammar actually generates the language {a,b}*: | ||
| + | |||
| + | $ S \Rightarrow ASB \Rightarrow aASB \Rightarrow aSB \Rightarrow aS $ \\ | ||
| + | $ S \Rightarrow BSA \Rightarrow bBSA \Rightarrow bSA \Rightarrow bS $ | ||
| Repaired: \\ | Repaired: \\ | ||
| - | $ S \leftarrow aSb | bSa | b | a | \epsilon $ | + | $ S \leftarrow aS | bS | \epsilon $ |
| </note> | </note> | ||
| </hidden> | </hidden> | ||
| + | |||
| **9.2.4.** Write an ambiguous grammar for $ L(a^*) $. | **9.2.4.** Write an ambiguous grammar for $ L(a^*) $. | ||
| + | |||
| + | |||
| <hidden><note important> | <hidden><note important> | ||
| - | $ S \leftarrow aS | aaS \epsilon $\\ | + | $ S \leftarrow aS | aaS | \epsilon $\\ |
| Ambiguuous: yes\\ | Ambiguuous: yes\\ | ||
| * S => aS => aaS => aa | * S => aS => aaS => aa | ||
| * S => aaS => aa | * S => aaS => aa | ||
| </note></hidden> | </note></hidden> | ||
| + | |||
| + | |||