Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
lfa:2022:lab08-the-pumping-lemma [2022/11/28 12:13] mihai.udubasa |
lfa:2022:lab08-the-pumping-lemma [2022/12/09 08:55] (current) pdmatei |
||
---|---|---|---|
Line 19: | Line 19: | ||
**8.1.1.** Show that the pumping lemma holds for finite languages. | **8.1.1.** Show that the pumping lemma holds for finite languages. | ||
- | /* | + | |
<hidden Solution> | <hidden Solution> | ||
Line 29: | Line 29: | ||
</hidden> | </hidden> | ||
- | */ | + | |
**8.1.2.*** Find a language which is not regular for which the pumping lemma holds. | **8.1.2.*** Find a language which is not regular for which the pumping lemma holds. | ||
Line 40: | Line 40: | ||
- | /* | + | |
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 63: | Line 63: | ||
</hidden> | </hidden> | ||
- | */ | ||
- | **8.2.2.** $ L = \{ \: w \in \{A,B\}^* \: | \: \#A(w) = \#B(w) \: \} $ | + | |
+ | **8.2.2.** $ L = \{ \: w \in \{A,B\}^* \: | \: \#_A(w) = \#_B(w) \: \} $ | ||
- | /* | ||
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 91: | Line 90: | ||
</hidden> | </hidden> | ||
- | */ | + | |
**8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ] | **8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ] | ||
- | /* | + | |
<hidden Solution> <note> | <hidden Solution> <note> | ||
$ w_n = (01)^n(10)^n $ | $ w_n = (01)^n(10)^n $ | ||
Line 152: | Line 151: | ||
</hidden> | </hidden> | ||
- | */ | + | |
**8.2.4.** $ L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $ | **8.2.4.** $ L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $ | ||
- | /* | + | |
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 178: | Line 177: | ||
</hidden> | </hidden> | ||
- | */ | + | |
**8.2.5.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $ | **8.2.5.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $ | ||
- | /* | + | |
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 208: | Line 207: | ||
</hidden> | </hidden> | ||
- | */ | + | |
**8.2.6.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ | **8.2.6.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ | ||
- | /* | ||
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 239: | Line 237: | ||
</hidden> | </hidden> | ||
- | */ | + | |
**8.2.7.** $ L = \{ \: ww^R \: | \: w\in \{0,1\}^* \} $ | **8.2.7.** $ L = \{ \: ww^R \: | \: w\in \{0,1\}^* \} $ | ||
- | /* | + | |
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 268: | Line 266: | ||
</hidden> | </hidden> | ||
- | */ | + | |
===== 8.3. Combining the pumping lemma with closure properties ===== | ===== 8.3. Combining the pumping lemma with closure properties ===== | ||
**8.3.1.** Using the pumping lemma, prove that $ L = \{ \: A^nB^m \: | \: n \neq m \}$ is not a regular language. | **8.3.1.** Using the pumping lemma, prove that $ L = \{ \: A^nB^m \: | \: n \neq m \}$ is not a regular language. | ||
- | /* | + | |
<hidden Solution> | <hidden Solution> | ||
<note> | <note> | ||
Line 287: | Line 285: | ||
</hidden> | </hidden> | ||
- | */ | + | |
/* | /* | ||
====== Homework ====== | ====== Homework ====== |