Differences
This shows you the differences between two versions of the page.
Both sides previous revision Previous revision Next revision | Previous revision | ||
lfa:2022:lab08-the-pumping-lemma [2022/11/27 00:35] alexandra.udrescu01 |
lfa:2022:lab08-the-pumping-lemma [2022/12/09 08:55] (current) pdmatei |
||
---|---|---|---|
Line 18: | Line 18: | ||
**8.1.1.** Show that the pumping lemma holds for finite languages. | **8.1.1.** Show that the pumping lemma holds for finite languages. | ||
+ | |||
<hidden Solution> | <hidden Solution> | ||
Line 28: | Line 29: | ||
</hidden> | </hidden> | ||
+ | |||
**8.1.2.*** Find a language which is not regular for which the pumping lemma holds. | **8.1.2.*** Find a language which is not regular for which the pumping lemma holds. | ||
Line 36: | Line 38: | ||
**8.2.1.** $ L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $ | **8.2.1.** $ L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $ | ||
+ | |||
+ | |||
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 60: | Line 64: | ||
</hidden> | </hidden> | ||
- | **8.2.2.** $ L = \{ \: w \in \{A,B\}^* \: | \: \#A(w) = \#B(w) \: \} $ | + | |
+ | **8.2.2.** $ L = \{ \: w \in \{A,B\}^* \: | \: \#_A(w) = \#_B(w) \: \} $ | ||
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 84: | Line 90: | ||
</hidden> | </hidden> | ||
+ | |||
**8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ] | **8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ] | ||
+ | |||
+ | |||
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 142: | Line 151: | ||
</hidden> | </hidden> | ||
+ | |||
**8.2.4.** $ L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $ | **8.2.4.** $ L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $ | ||
+ | |||
+ | |||
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 168: | Line 180: | ||
**8.2.5.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $ | **8.2.5.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $ | ||
+ | |||
+ | |||
Line 192: | Line 206: | ||
</hidden> | </hidden> | ||
+ | |||
**8.2.6.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ | **8.2.6.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ | ||
+ | |||
Line 222: | Line 238: | ||
</hidden> | </hidden> | ||
- | **8.2.7.** $ L = \{ \: ww^R \: | \: w\in \{0,1\}^* \} | + | |
+ | **8.2.7.** $ L = \{ \: ww^R \: | \: w\in \{0,1\}^* \} $ | ||
+ | |||
<hidden Solution> <note> | <hidden Solution> <note> | ||
Line 238: | Line 257: | ||
Find k such that $ xy^kz \notin L $: | Find k such that $ xy^kz \notin L $: | ||
- | $ w_k = 0^{n+(k-1)b}10^n $ | + | $ w_k = 0^{n+(k-1)b}110^n $ |
- | Pick $ k = 2 $ => $ w_2 = 0^{n+b}10^n \notin L $ because $ b \ge 1 $ | + | Pick $ k = 2 $ => $ w_2 = 0^{n+b}110^n \notin L $ because $ b \ge 1 $ |
=> Complement of Pumping Lemma holds => L is not a regular language | => Complement of Pumping Lemma holds => L is not a regular language |