Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
lfa:2022:lab08-the-pumping-lemma [2022/11/27 00:35]
alexandra.udrescu01
lfa:2022:lab08-the-pumping-lemma [2022/12/09 08:55] (current)
pdmatei
Line 18: Line 18:
  
 **8.1.1.** Show that the pumping lemma holds for finite languages. **8.1.1.** Show that the pumping lemma holds for finite languages.
 +
  
 <hidden Solution>​ <hidden Solution>​
Line 28: Line 29:
  
 </​hidden>​ </​hidden>​
 +
  
 **8.1.2.*** Find a language which is not regular for which the pumping lemma holds. **8.1.2.*** Find a language which is not regular for which the pumping lemma holds.
Line 36: Line 38:
  
 **8.2.1.** $  L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $ **8.2.1.** $  L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $
 +
 +
  
 <hidden Solution>​ <​note>​ <hidden Solution>​ <​note>​
Line 60: Line 64:
 </​hidden>​ </​hidden>​
  
-**8.2.2.** $  L = \{ \: w \in \{A,B\}^* \: | \: \#A(w) = \#B(w) \: \} $+ 
 +**8.2.2.** $  L = \{ \: w \in \{A,B\}^* \: | \: \#_A(w) = \#_B(w) \: \} $ 
  
 <hidden Solution>​ <​note>​ <hidden Solution>​ <​note>​
Line 84: Line 90:
  
 </​hidden>​ </​hidden>​
 +
  
 **8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ] **8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ]
 +
 +
  
 <hidden Solution>​ <​note>​ <hidden Solution>​ <​note>​
Line 142: Line 151:
  
 </​hidden>​ </​hidden>​
 +
  
 **8.2.4.** $  L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $ **8.2.4.** $  L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $
 +
 +
  
 <hidden Solution>​ <​note>​ <hidden Solution>​ <​note>​
Line 168: Line 180:
  
 **8.2.5.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $ **8.2.5.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $
 +
 +
  
  
Line 192: Line 206:
  
 </​hidden>​ </​hidden>​
 +
  
  
 **8.2.6.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ **8.2.6.** $  L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $
 +
  
  
Line 222: Line 238:
 </​hidden>​ </​hidden>​
  
-**8.2.7.** $  L = \{ \: ww^R  \: | \: w\in \{0,1\}^* \} + 
 +**8.2.7.** $  L = \{ \: ww^R  \: | \: w\in \{0,1\}^* \} 
 + 
  
 <hidden Solution>​ <​note>​ <hidden Solution>​ <​note>​
Line 238: Line 257:
 Find k such that $ xy^kz \notin L $:  Find k such that $ xy^kz \notin L $: 
  
-$ w_k = 0^{n+(k-1)b}10^n $+$ w_k = 0^{n+(k-1)b}110^n $
  
-Pick $ k = 2 $ => $ w_2 = 0^{n+b}10^n \notin L $ because $ b \ge 1 $+Pick $ k = 2 $ => $ w_2 = 0^{n+b}110^n \notin L $ because $ b \ge 1 $
  
 => Complement of Pumping Lemma holds => L is not a regular language => Complement of Pumping Lemma holds => L is not a regular language