Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision Next revision | Previous revision | ||
|
lfa:2022:lab08-the-pumping-lemma [2022/11/27 00:24] alexandra.udrescu01 |
lfa:2022:lab08-the-pumping-lemma [2022/12/09 08:55] (current) pdmatei |
||
|---|---|---|---|
| Line 18: | Line 18: | ||
| **8.1.1.** Show that the pumping lemma holds for finite languages. | **8.1.1.** Show that the pumping lemma holds for finite languages. | ||
| + | |||
| <hidden Solution> | <hidden Solution> | ||
| Line 28: | Line 29: | ||
| </hidden> | </hidden> | ||
| + | |||
| **8.1.2.*** Find a language which is not regular for which the pumping lemma holds. | **8.1.2.*** Find a language which is not regular for which the pumping lemma holds. | ||
| Line 36: | Line 38: | ||
| **8.2.1.** $ L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $ | **8.2.1.** $ L = \{ \: A^n B^m \: | \: 0 \leq n \leq m \: \} $ | ||
| + | |||
| + | |||
| <hidden Solution> <note> | <hidden Solution> <note> | ||
| Line 60: | Line 64: | ||
| </hidden> | </hidden> | ||
| - | **8.2.2.** $ L = \{ \: w \in \{A,B\}^* \: | \: \#A(w) = \#B(w) \: \} $ | + | |
| + | **8.2.2.** $ L = \{ \: w \in \{A,B\}^* \: | \: \#_A(w) = \#_B(w) \: \} $ | ||
| <hidden Solution> <note> | <hidden Solution> <note> | ||
| Line 84: | Line 90: | ||
| </hidden> | </hidden> | ||
| + | |||
| **8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ] | **8.2.3.** $math[L = \{(01)^n(10)^n \mid n > 0 \} ] | ||
| + | |||
| + | |||
| <hidden Solution> <note> | <hidden Solution> <note> | ||
| Line 110: | Line 119: | ||
| $ w_k = (01)^a((01)^b0)^k1(01)^{n-b-a-1}(10)^n $ | $ w_k = (01)^a((01)^b0)^k1(01)^{n-b-a-1}(10)^n $ | ||
| - | Pick k = 2 => $ w_k = (01)^a(01)^b0(01)^b01(01)^{n-b-a-1}(10)^n \notin L $ because it has 2 conseccutive "0" | + | Pick k = 2 => $ w_2 = (01)^a(01)^b0(01)^b01(01)^{n-b-a-1}(10)^n \notin L $ because it has 2 conseccutive "0" |
| **Case 3:** | **Case 3:** | ||
| Line 122: | Line 131: | ||
| $ w_k = (01)^a0(1(01)^b)^k(01)^{n-b-a-1}(10)^n $ | $ w_k = (01)^a0(1(01)^b)^k(01)^{n-b-a-1}(10)^n $ | ||
| - | Pick k = 3 => $ w_k = (01)^a01(01)^b1(01)^b1(01)^b(01)^{n-b-a-1}(10)^n $ | + | Pick k = 3 => $ w_3 = (01)^a01(01)^b1(01)^b1(01)^b(01)^{n-b-a-1}(10)^n $ |
| - | * b = 0 => $ w_k = (01)^a0111(01)^{n-b-a-1}(10)^n \notin L $ | + | * b = 0 => $ w_3 = (01)^a0111(01)^{n-b-a-1}(10)^n \notin L $ |
| - | * b > 0 => $ w_k = (01)^a01(01)^b1(01)^b1(01)^b(01)^{n-b-a-1}(10)^n \notin L $ because there are 2 sets of consecutive "1" | + | * b > 0 => $ w_3 = (01)^a01(01)^b1(01)^b1(01)^b(01)^{n-b-a-1}(10)^n \notin L $ because there are 2 sets of consecutive "1" |
| **Case 4:** | **Case 4:** | ||
| Line 136: | Line 145: | ||
| $ w_k = (01)^a0(1(01)^b0)^k1(01)^{n-b-a-2}(10)^n $ | $ w_k = (01)^a0(1(01)^b0)^k1(01)^{n-b-a-2}(10)^n $ | ||
| - | Pick k = 0=> $ w_k = (01)^a01(01)^{n-b-a-2}(10)^n = (01)^{n-b-1}(10)^n \notin L$ | + | Pick k = 0 => $ w_0 = (01)^a01(01)^{n-b-a-2}(10)^n = (01)^{n-b-1}(10)^n \notin L$ |
| => Complement of Pumping Lemma holds => L is not a regular language | => Complement of Pumping Lemma holds => L is not a regular language | ||
| Line 142: | Line 151: | ||
| </hidden> | </hidden> | ||
| + | |||
| **8.2.4.** $ L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $ | **8.2.4.** $ L = \{ \: w \in \{A,B\}^* \: | \: \text{w is a palindrome} \: \} $ | ||
| + | |||
| + | |||
| <hidden Solution> <note> | <hidden Solution> <note> | ||
| Line 168: | Line 180: | ||
| **8.2.5.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $ | **8.2.5.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a prime number} \: \} $ | ||
| + | |||
| + | |||
| Line 186: | Line 200: | ||
| $ w_k = 0^{p+(k-1)b} $ | $ w_k = 0^{p+(k-1)b} $ | ||
| - | Pick $ k = p+1 $ => $ w_{p+1} = 0^{p+cp} = 0^{(p+1)c} \notin L $ | + | Pick $ k = p+1 $ => $ w_{p+1} = 0^{p+cp} = 0^{(p+1)c} \notin L $ because $ (p+1)c $ is not a prime number |
| => Complement of Pumping Lemma holds => L is not a regular language | => Complement of Pumping Lemma holds => L is not a regular language | ||
| Line 192: | Line 206: | ||
| </hidden> | </hidden> | ||
| + | |||
| **8.2.6.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ | **8.2.6.** $ L = \{ \: w \in \{0\}^* \: | \: \text{the length of w is a power of two} \: \} $ | ||
| - | **8.2.7.** $ L = \{ \: ww^R \: | \: w\in \{0,1\}^* \} | + | |
| - | $ | + | |
| + | <hidden Solution> <note> | ||
| + | |||
| + | For a fixed n, pick a word $ w_n \in L $ and $ w_n = xyz $: | ||
| + | |||
| + | $ w_n = 0^{2^p}, 2^p \gt n $ | ||
| + | |||
| + | $ x = 0^a $ | ||
| + | |||
| + | $ y = 0^b, b \ge 1 $ | ||
| + | |||
| + | $ |xy| \le n => |y| \lt n \lt 2^p => 0 < b < 2^p $ | ||
| + | |||
| + | $ z = 0^{2^p-b-a} $ | ||
| + | |||
| + | Find k such that $ xy^kz \notin L $: | ||
| + | |||
| + | $ w_k = 0^{2^p+(k-1)b} $ | ||
| + | |||
| + | Pick $ k = 2 $ => $ w_2 = 0^{2^p+b} \notin L $ because $ 2^p < 2^p + b < 2^p + 2^p = 2^{p+1} $ | ||
| + | |||
| + | => Complement of Pumping Lemma holds => L is not a regular language | ||
| + | </note> | ||
| + | |||
| + | </hidden> | ||
| + | |||
| + | |||
| + | **8.2.7.** $ L = \{ \: ww^R \: | \: w\in \{0,1\}^* \} $ | ||
| + | |||
| + | |||
| + | |||
| + | <hidden Solution> <note> | ||
| + | |||
| + | For a fixed n, pick a word $ w_n \in L $ and $ w_n = xyz $: | ||
| + | |||
| + | $ w_n = 0^n110^n $ | ||
| + | |||
| + | $ x = 0^a $ | ||
| + | |||
| + | $ y = 0^b, b \ge 1 $ | ||
| + | |||
| + | $ z = 0^{n-a-b}10^n $ | ||
| + | |||
| + | Find k such that $ xy^kz \notin L $: | ||
| + | |||
| + | $ w_k = 0^{n+(k-1)b}110^n $ | ||
| + | |||
| + | Pick $ k = 2 $ => $ w_2 = 0^{n+b}110^n \notin L $ because $ b \ge 1 $ | ||
| + | |||
| + | => Complement of Pumping Lemma holds => L is not a regular language | ||
| + | </note> | ||
| + | |||
| + | </hidden> | ||