Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
laborator [2020/09/08 10:01]
pdmatei created
laborator [2020/09/10 17:57] (current)
pdmatei
Line 1: Line 1:
 ====== Laborator AA ====== ====== Laborator AA ======
 +
 +===== Part 1 - Decidability - 4 labs =====
 +
 +==== 1. Turing Machine ====
 +
 +Key concepts:
 +  - computation (the output of the tape) and acceptance (acceptare);​
 +  - mechanical description of an algorithm
 +
 +  - (Answers online - discussion) A **Turing Machine** consists of:
 +    * an **alphabet** $math[\Sigma]
 +    * a set of **states** $math[K]
 +    * an **initial** state $math[q_0]
 +    * a **transition function** $math[\delta : K \times \Sigma \rightarrow K \times \Sigma \times \{L,H,R\}]
 +    * a set of **final** states $math[F \subseteq K]
 +
 +Which of the following components of an **assembly language** would best correspond to the above? $math[K,​\Sigma,​ \delta, q_0, F]
 +  * the processor
 +  * the memory
 +  * registers
 +  * assembly instructions
 +
 +  - (Answers online) What does the following TM do? (**bitwise complement**)
 +  - (Answers online) Write a TM which **accepts** only if the **input** is a binary encoding of a **even** natural number.
 +  - (Answers online) Write a TM which adds **5** to a number encoded in binary on the tape. The machine will always accept.
 +  - (Answers online) Check if a symbol is present on the tape.
 +  - (Discussion) How would the following algorithm be represented as a Turing Machine:
 +<​code>​
 +Algorithm(vector V, integer M) {
 +   ​integer s = 0
 +   ​for-each x in V
 +      s += x
 +   if (x > 1000)
 +   ​then ​ return 1
 +   ​else ​ return 0
 +}
 +</​code>​
 +Helpful questions:
 +  * how should the tape be organised?
 +  * when should the machine accept?
 +  * how would ''​foreach x in V''​ be implemented?​
 +  * how would ''​s += x''​ be implemented?​
 +  * how would ''​if (x > 1000) then ... else ...''​ be implemented ?
 +
 +Homework:
 +  * Write a TM which verifies if a string has the **same number** of ones and zeroes. Give hints - live (what should the machine do?)
 +  * write a TM which **accepts** a given regular expression
 +  * write a TM which **reverses** a given binary string (always accepts)
 +
 + 
 +==== 2. Turing Machines and Solvability ====
 +
 +Key concepts: ​
 +  * **acceptance** vs **decision**
 +  * complement of a problem.
 +
 +  * Can the following problem be **accepted** by a TM? (f(x) = 0) 
 +    * What is the complement of this problem?
 +  * Can a problem be accepted by two different TMs? Can a TM accept two different problems?
 +  * If a problem is accepted by some TM, can its complement also be accepted?
 +  * If a problem is **decided** by some TM, can its complement also be decided? ​
 +  * Write a TM which accepts //is-odd// problem but which does not decide it.
 +  * Which of the following problems you **think** can be **accepted** and which can be **decided**?​ Use pseudocode instead of writing a TM.
 +      * a) V [[https://​arxiv.org/​pdf/​1902.10188.pdf | Undecidable example 1]]
 +      * b) V [[https://​en.wikipedia.org/​wiki/​Hilbert%27s_tenth_problem | Hilbert undecidable ]]
 +      * c) V [[https://​en.wikipedia.org/​wiki/​Wang_tile | Wang Tile]]
 +      * e) k-color
 +      * f) Linear Integer Programming
 +
 +==== 3. The Universal Turing Machine ====
 +
 +Key concepts: ​
 +  * simulation
 +
 +Exercises:
 +  * The Von Newmann architecture - explained.
 +  * Which of the components of Von Newmann arch. corresponds best to the TM?
 +  * Write a TM pseudocode which verifies if a word is the proper encoding of a TM.
 +    Discussion on the pseudocode.
 +  * Write a TM pseudocode which accepts if **there exists** a word which is accepted by a given TM in **k steps**.
 +    Discussion on the pseudocode
 +  * Which of the following is a suitable pseudocode for a TM:
 +<​code>​
 +Algoritm(M,​w){
 +   if size(w) > 10
 +     then if M halts for w in k steps
 +          accept.
 +
 +</​code>​
 +<​code>​
 +Algoritm(M1,​M2,​w){
 +   k = 0
 +   while true
 +       if M1(w) has the same behaviour as M2(w) after k steps
 +          then accept
 +       else k = k + 1
 +
 +</​code>​
 +<​code>​
 +Algorithm(M,​A) {
 +   // A is a finite set of words
 +   for each w in A
 +       if M(w) halts  //​undecidable! Pseudocode is ok, but this machine may not terminate
 +          then accept
 +}
 +</​code>​
 +<​code>​
 +Algorithm(M,​w) {
 +   build the machine M' such that M(x) accepts iff M'(x) does not accept, for all words x
 +   if M'(w) in 1000 steps
 +      accept
 +}
 +</​code>​
 +<​code>​
 +Algorithm(M1,​M2) {
 +    if M1 always halts then     //we know of no procedure, terminating or not, which can achieve this. This is not a proper TM/​algorithm.
 +       if M2 always halts then 
 +          accept
 +}
 +</​code>​
 +
 +  * Write the problem which is accepted by each of the above machines.
 +  * Write a TM pseudocode which accepts if a **given** word is accepted by two given TMs. Explain the dovetailing technique.
 +
 +Homework:
 +  * Write a TM pseudocode which accepts if **there exists** a word which is accepted by two given TMs.
 +  * Write a TM pseudocode which accepts if **there exists** a TM which accepts a given word.
 +  * Write a TM pseudocode which accepts if a given TM accepts **some** word of a given finite set A.
 +  * Write a TM pseudocode which accepts if a given TM accepts **all** words of a given finite set A.
 +
 +
 +[[https://​www.bbc.co.uk/​bitesize/​guides/​zhppfcw/​revision/​3#:​~:​text=Von%20Neumann%20architecture%20is%20the,​both%20stored%20in%20primary%20storage | Von Newmann Model]]
 +
 +==== 4. Undecidable problems ====
 +
 +Key concept:
 +  * reduction
 +  * proving a problem is not in R
 +  * proving a problem is not in RE
 +
 +===== Part 2 - Measuring algorithm performance (3 labs) =====
 +
 +
 +==== Notatii asimptotice ====
 +  * (Homework) Implement mergesort and insertionsort in python. Use a large dataset (provided by us) to test your implementation. Plot the execution times together with the functions $math[n^2] and $math[n\cdot \log{n}] using ''​gnuplot''​. What do you observe? Adjust the constants for the previous functions so that the rate of growth can be better observed.
 +  * Exercitii clasice
 +
 +==== Recurente ====
 +  * Cativa algoritmi si recurentele lor
 +    * Merge-sort,
 +    * Quick-sort (curs)
 +    * Exemplul cu sqrt(n) al lui Sebi.
 +  * Exercitii clasice
 +
 +==== Ammortised Analysis ====
 +  * Classical exercises
 +
 +===== Part 3 - Algorithm complexity (4 labs) =====
 +
 +==== NP completitudine ====
 +  * Implement a SAT solver which encodes formulae as matrices and iterates over interpretations treating them as binary counters. Plot execution times.
 +  * Implement a better SAT solver which uses BDDs to encode a formula. The variable ordering is known in advance. Plot execution times.
 +  * Implement a k-Vertex-Cover solver using a reduction from SAT, and any of the above solvers.
 +  * Exercitii clasice cu choice si reduceri
 +
 +===== Part 4 - Abstract Datatypes (2 labs) =====
 +
 +==== TDA-uri ====
 +  * Conceptul de operator vs cel de functie (exercitiu in C, exercitiu in Haskell, pe Liste)
 +  * (Homework) Implementare LinkedList si ArrayList in Python, impreuna cu operatii. Implementare Haskell a operatiilor,​ dupa o discutie la curs despre acestea.
 +  * Exercitii clasice
 +
 +