Differences
This shows you the differences between two versions of the page.
Next revision | Previous revision | ||
fp2023:lab05 [2023/03/21 17:45] pdmatei created |
fp2023:lab05 [2023/03/31 12:58] (current) pdmatei |
||
---|---|---|---|
Line 4: | Line 4: | ||
Consider the following type defined to represent natural numbers: | Consider the following type defined to represent natural numbers: | ||
<code scala> | <code scala> | ||
- | trait Nat | + | trait Nat { |
+ | def isZero: Boolean | ||
+ | def add(other: Nat): Nat | ||
+ | def subtract(other: Nat): Nat | ||
+ | def greater(other: Nat): Boolean | ||
+ | def toInt: Int | ||
+ | } | ||
case object Zero extends Nat | case object Zero extends Nat | ||
case class Succ(n: Nat) extends Nat | case class Succ(n: Nat) extends Nat | ||
</code> | </code> | ||
- | **4.1.1.** Implement the following function: | + | When implementing the following methods, think about whether or not they are **local** (are they best implemented using functional or OO decomposition?) |
- | <code scala> | + | |
- | def isZero(n: Nat): Nat = | + | |
- | n match { | + | |
- | case Zero => ??? | + | |
- | case Succ(np) => ??? | + | |
- | } | + | |
- | </code> | + | |
- | **4.1.2.** Implement the addition function over natural numbers: | + | **4.1.1.** Implement the method ''isZero'' which checks if a number is equal to ''Zero'' or not. |
+ | |||
+ | **4.1.2.** Implement the addition method over natural numbers. | ||
+ | |||
+ | **4.1.3.** Implement the subtraction method over natural numbers. If $math[n > m] then $math[m - n = 0]. | ||
+ | |||
+ | **4.1.4.** Implement ''greater'' which checks if a natural number is strictly larger than the other. | ||
+ | |||
+ | **4.1.5.** Implement a function which converts a Nat to a Scala Int. | ||
+ | |||
+ | ==== 4.2. The type OList (Object-Oriented implementation of lists) ==== | ||
+ | |||
+ | Start with the following trait, which encodes lists over integers. | ||
<code scala> | <code scala> | ||
- | def add(n: Nat, m: Nat): Nat = | + | trait OList{ |
- | n match { | + | def head: Int |
- | case Zero => ??? | + | def tail: OList |
- | case Succ(np) => ??? | + | def foldRight[B](acc: B)(op: (Int,B) => B): B |
- | } | + | def foldLeft[B](acc: B)(op: (B,Int) => B): B |
+ | def indexOf(i: Int): Int | ||
+ | def filter(p: Int => Boolean): OList | ||
+ | def map(f: Int => Int): OList | ||
+ | def partition(p: Int => Boolean): (OList, OList) | ||
+ | def slice(start: Int, stop: Int): OList | ||
+ | def forall(p: Int => Boolean): Boolean | ||
+ | } | ||
</code> | </code> | ||
- | **4.1.3.** Implement the subtraction function over natural numbers. If $math[n > m] then $math[m - n = 0]. | + | **4.2.1.** Implement the constructors for the **empty list** as well as for the **nonempty list of integers**. |
- | <code scala> | + | |
- | def subtract(n: Nat, m: Nat): Nat = ??? | + | **4.2.2.** Implement ''head'' and ''tail'' accordingly. |
+ | |||
+ | **4.2.3.** Implement ''foldRight''. Follow the same strategy as in the previous labs. Also implement foldLeft. Make sure it is tail-recursive. | ||
+ | |||
+ | |||
+ | **4.2.5.** Implement ''filter''. Try and use ''foldRight'' in your implementation. The following diagram illustrates the behaviour of ''filter'': | ||
+ | <code> | ||
+ | 1 2 3 4 5 6 7 8 9 10 11 | ||
+ | filter(p => p % 2 == 0) | ||
+ | 2 4 6 8 10 | ||
</code> | </code> | ||
- | **4.1.4.** Implement ''greater'' which checks if a natural number is strictly larger than the other: | + | **4.2.4.** Implement ''indexOf'' which retrieves the position of an element in a list if it exists and -1 otherwise. Try and use an appropriate type of fold for your implementation. |
- | <code scala> | + | |
- | def greater(n: Nat, m: Nat): Nat = | + | |
- | (n,m) match { | + | **4.2.6.** Implement ''map''. Try and use an appropriate type of fold in your implementation. The following diagram illustrates the behaviour of map: |
- | ??? | + | <code> |
- | } | + | 1 2 3 4 5 6 7 8 9 10 |
+ | map (_*2) | ||
+ | 2 4 6 8 10 12 14 16 18 20 | ||
</code> | </code> | ||
- | **4.1.5.** Equality is already defined for all case classes, as structural equality (objects built in the same way are equal). However, re-implement equality over naturals: | + | **4.2.7.** Implement ''partition''. It is supposed to return a pair of lists. (!!) Try and use an appropriate type of fold in your implementation. The following diagram illustrates the behaviour of partition: |
- | <code scala> | + | <code> |
- | def equal(n: Nat, m: Nat): Nat = ??? | + | 1 2 3 4 5 6 7 8 9 10 |
+ | partition(_ % 2 == 0) | ||
+ | (1 3 5 7 9, 2 4 6 8 10) | ||
</code> | </code> | ||
- | **4.1.6.** Implement a function which converts a Nat to a Scala Int: | + | **4.2.8.** Implement ''slice''. The following diagram illustrates the behaviour of slice: |
- | <code scala> | + | <code> |
- | def toInt(n: Nat): Int = ??? | + | 1 2 3 4 5 6 7 8 9 10 |
+ | slice(2,4) | ||
+ | 3 4 5 | ||
</code> | </code> | ||
- | **4.1.7.** Implement a function which converts an Int to a Nat: | + | **4.2.8.** Implement ''forall''. Try and use an appropriate type of fold in your implementation. The following diagram illustrates the behaviour of forall: |
- | <code scala> | + | <code> |
- | def fromInt(i: Int): Nat = ??? | + | 1 2 3 4 5 6 7 8 9 10 |
+ | forall(_ % 2 == 0) | ||
+ | false | ||
</code> | </code> |