Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision | |||
|
fp:lab04 [2022/05/15 23:53] vbadoiu |
fp:lab04 [2022/05/15 23:54] (current) vbadoiu old revision restored (2022/03/25 10:15) |
||
|---|---|---|---|
| Line 92: | Line 92: | ||
| def honorsList(g: Gradebook): List[String] = ??? | def honorsList(g: Gradebook): List[String] = ??? | ||
| </code> | </code> | ||
| - | |||
| - | ===== 5. Functional data representation ===== | ||
| - | |||
| - | ==== 5.1. Nats === | ||
| - | |||
| - | Consider the following toy implementation of the type ''Nat'' which encodes natural numbers. | ||
| - | |||
| - | <code scala> | ||
| - | trait Nat {} | ||
| - | case object Zero extends Nat {} | ||
| - | case class Succ(n: Nat) extends Nat {} | ||
| - | </code> | ||
| - | |||
| - | For instance, ''3'' will be encoded as the value: ''Succ(Succ(Succ(Zero)))''. | ||
| - | |||
| - | **5.1.1.** Write a function which implements addition over Nats: | ||
| - | <code scala> | ||
| - | def add(n: Nat, m: Nat): Nat = ??? | ||
| - | </code> | ||
| - | |||
| - | **5.1.2.** Write a function which converts a ''Nat'' to an ''Int'': | ||
| - | <code scala> | ||
| - | def toInt(n: Nat): Int = ??? | ||
| - | </code> | ||
| - | |||
| - | **5.1.3.** Write a function which converts an ''Int'' to a ''Nat''. | ||
| - | <code scala> | ||
| - | def fromInt(i: Int): Nat | ||
| - | </code> | ||
| - | |||
| - | ==== 5.2. Binary Search Trees === | ||
| - | |||
| - | In a [[https://en.wikipedia.org/wiki/Binary_search_tree| binary search tree (BST)]], the key of the current node, is always: | ||
| - | * **smaller** or equal than **all** keys in the **right** sub-tree. | ||
| - | * **larger** or equal than **all** keys in the **left** sub-tree. | ||
| - | |||
| - | Consider a binary search tree with keys as integers, encoded as follows: | ||
| - | <code scala> | ||
| - | trait ITree {} | ||
| - | case object Empty extends ITree | ||
| - | case class INode(key: Int, left: ITree, right: ITree) extends ITree | ||
| - | </code> | ||
| - | |||
| - | **5.2.1.** Create the tree shown below: | ||
| - | <code scala> | ||
| - | val tree = ??? | ||
| - | /* | ||
| - | 5 | ||
| - | / \ | ||
| - | 2 7 | ||
| - | / \ \ | ||
| - | 1 3 9 | ||
| - | */ | ||
| - | </code> | ||
| - | |||
| - | **5.2.2.** Implement the method ''size'' which determines the number of non-empty nodes from the BST. | ||
| - | |||
| - | **5.2.3.** Define the method ''contains'', which checks if a given integer is a member of the BST. | ||
| - | |||
| - | **5.2.4.** Implement the method ''ins'' which inserts a new integer in the BST. **Note:** the insertion must return a new BST (the //binary search tree// property mentioned above must hold after insertion). | ||
| - | |||
| - | **5.2.5.** Implement a method ''flatten'' which converts a BST into a list of integers. You must carefully choose the flattening method in such a way as to obtain **a sorted list** from the BST. Hint: you may use the list concatenation operator '':::'' (triple colons; example usage: ''List(1,2,3):::List(4,5)''. | ||
| - | |||
| - | **5.2.6.** Implement a method ''depth'' which returns the maximal depth of a BST. Hint: use the method: ''_.max(_)''. | ||
| - | |||
| - | **(!) 5.2.8.** Implement a method ''minimum'' which returns the smallest integer from a BST. (If the tree is empty, we return -1). Hint: use the example above, to guide your implementation. | ||
| - | |||
| - | **5.2.9.** Implement a similar method ''maximum''. | ||
| - | |||
| - | **(!) 5.2.10.** Implement a method ''successor(k)'' which returns **the smallest** integer from the BST, which is **larger** than ''k''. Use the following examples for your implementation: | ||
| - | <code> | ||
| - | 5 t.successor(2) = 5 | ||
| - | / \ t.successor(5) = 6 | ||
| - | 2 7 t.successor(7) = 8 | ||
| - | / \ | ||
| - | 6 8 | ||
| - | </code> | ||
| - | |||
| - | ** (!!) 5.2.11.** Implement a method ''remove(k)'' which removes element ''k'' from the BST. | ||