Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
fp:lab02 [2022/02/24 11:31]
pdmatei
fp:lab02 [2023/03/10 10:16] (current)
pdmatei
Line 9: Line 9:
  
  
-2.1. Write a tail-recursive function that computes the factorial of a natural number. Start from the code stub below:+**2.1.** Write a tail-recursive function that computes the factorial of a natural number. Start from the code stub below:
  
 <code scala> <code scala>
-def fact (n: Integer): Integer ​= { +def fact (n: Int): Int = { 
-   def aux_fact(nInteger, acc: Integer): Integer ​+   def aux_fact(iInt, acc: Int): Int 
        if (???) acc        if (???) acc
        else ???        else ???
Line 20: Line 20:
 </​code>​ </​code>​
  
-2.2. Implement a tail-recursive function that computes the greatest common divisor of a natural number:+**2.2.** Implement a tail-recursive function that computes the greatest common divisor of a natural number:
  
 <code scala> <code scala>
Line 26: Line 26:
 </​code>​ </​code>​
  
-2.3. Write a tail-recursive function takes an integer $math[n] and computes the value $math[1 + 2^2 + 3^2 + ... + (n-1)^2 + n^2]. (Hint: use inner functions).+**2.3.** Write a tail-recursive function takes an integer $math[n] and computes the value $math[1 + 2^2 + 3^2 + ... + (n-1)^2 + n^2]. (Hint: use inner functions).
  
 <code scala> <code scala>
Line 38: Line 38:
   * Compute $math[x_{n+1} = \displaystyle\frac{1}{2}(x_n+\frac{a}{x_n})]   * Compute $math[x_{n+1} = \displaystyle\frac{1}{2}(x_n+\frac{a}{x_n})]
  
-2.4. Implement the function ''​improve''​ which takes an estimate $math[x_n] of $math[\sqrt{a}] and improves it (computes $math[x_{n+1}]).+**2.4.** Implement the function ''​improve''​ which takes an estimate $math[x_n] of $math[\sqrt{a}] and improves it (computes $math[x_{n+1}]).
 <code scala> <code scala>
 def improve(xn: Double, a: Double): Double = ??? def improve(xn: Double, a: Double): Double = ???
 </​code>​ </​code>​
  
-2.5. Implement the function ''​nthGuess''​ which starts with $math[x_0 = 1] and computes the nth estimate $math[x_n] of $math[\sqrt{a}]:​+**2.5.** Implement the function ''​nthGuess''​ which starts with $math[x_0 = 1] and computes the nth estimate $math[x_n] of $math[\sqrt{a}]:​
 <code scala> <code scala>
-def nth_guess(n: ​Double, a: Double): Double = ???+def nth_guess(n: ​Int, a: Double): Double = ???
 </​code>​ </​code>​
  
 Note that: Note that:
-  * for smaller $math[a], there is no need to compute $math[n] estimations ​(as $math[(x_n)_n] converges quite fast to $math[\sqrt{a}]. ​+  * for smaller $math[a], there is no need to compute $math[n] estimations as $math[(x_n)_n] converges quite fast to $math[\sqrt{a}]. ​
    
-2.6. Thus, implement the function ''​acceptable''​ which returns ''​true''​ iff $math[\mid x_n^2 - a \mid \leq 0.001]. (Hint, google the ''​abs''​ function in Scala. Don't forget to import ''​scala.math._''​).+**2.6.** Thus, implement the function ''​acceptable''​ which returns ''​true''​ iff $math[\mid x_n^2 - a \mid \leq 0.001]. (Hint, google the ''​abs''​ function in Scala. Don't forget to import ''​scala.math._''​).
 <code scala> <code scala>
   def acceptable(xn:​ Double, a: Double): Boolean = ???   def acceptable(xn:​ Double, a: Double): Boolean = ???
 </​code>​ </​code>​
  
-2.7. Implement the function ''​mySqrt''​ which computes the square root of an integer ''​a''​. Modify the previous implementations to fit the following code structure:+**2.7.** Implement the function ''​mySqrt''​ which computes the square root of an integer ''​a''​. Modify the previous implementations to fit the following code structure:
 <code scala> <code scala>
 def mySqrt(a: Double): Double = { def mySqrt(a: Double): Double = {
Line 67: Line 67:
 } }
 </​code>​ </​code>​
 +
 +**2.8. (!) **  Try out your code for: ''​2.0e50''​ (which is $math[2.0\cdot 10^{50}]) or ''​2.0e-50''​. The code will likely take a very long time to finish. The reason is that $math[xn^2 - a] will suffer from rounding error which may be larger than 0.001. Can you find a different implementation for the function ''​acceptable''​ which takes that into account? (Hint: the code is just as simple as the original one). 
 +