Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
fp:lab02 [2021/03/18 10:45]
pdmatei
fp:lab02 [2023/03/10 10:16] (current)
pdmatei
Line 1: Line 1:
-====== ​Introduction to Haskell ​======+====== ​2. Scala syntax and function definition ​======
  
 +** Objectives: **
 +  * get yourself familiar with Scala syntax basics
 +  * practice writing **tail-recursive** functions as an alternative to imperative **loops** ​
 +  * keep your code clean and well-structured.
  
-===== Functions in Haskell =====+** Create a new Scala worksheet to write your solutions **
  
-In mathematics,​ functions have a domain an codomain. In Haskell, functions have **types** or **signatures**. They often can be omitted in Haskell, but can 
-also be explicitly written as in: 
  
-<code haskell>​ +**2.1.** Write a tail-recursive function that computes the factorial of a natural number. Start from the code stub below:
-:: Integer -> Integer -> Integer +
-f x y = x + y +
-</​code>​+
  
-or: +<​code ​scala
-<​code ​haskell+def fact (nInt)Int { 
-:: Bool -> Bool +   def aux_fact(i: Int, acc: Int): Int  
-f True False +       if (???) acc 
-f False True+       else ??? 
 +   ??? 
 +}
 </​code>​ </​code>​
  
-3 ​Write ​a function ​together with its signature, which implements boolean AND: +**2.2.** Implement ​tail-recursive ​function ​that computes the greatest common divisor of a natural number:
-<code haskell>​ +
-myand :: Bool -> Bool -> Bool +
-... +
-</​code>​+
  
-5. Write an implementation for a function ''​ifp''​ which takes a boolean, expressions $math[e_1] and $math[e_2] and returns $math[e_1] if the boolean is true and $math[e_2] otherwise. +<​code ​scala
-<​code ​haskell+def gcd(a: Int, b: Int): Int ???
-ifp ...+
 </​code>​ </​code>​
  
-6. Write a function ​which takes three integers ​and returns ​the largestHint sometimes parentheses are **important in function calls**+**2.3.** Write a tail-recursive ​function takes an integer $math[n] ​and computes ​the value $math[1 + 2^2 + 3^2 + ... + (n-1)^2 + n^2](Hint: use inner functions). 
-<​code ​haskell+ 
-:: Integer -> Integer -> Integer -> Integer+<​code ​scala
 +def sumSquares(nInt)Int = ???
 </​code>​ </​code>​
  
-<<We have to explain the syntax of if>>+===== Newton'​s Square Root method =====
  
-<<​Explain syntax of guards>>​+A very fast way to numerically compute $math[\sqrt{a}],​ often used as a standard //sqrt(.)// implementation,​ relies on Newton'​s Square Root approximation. The main idea relies on starting with an estimate (often 1), and incrementally improving the estimate. More precisely:​ 
 +  * Start with $math[x_0 = 1]. 
 +  * Compute $math[x_{n+1} = \displaystyle\frac{1}{2}(x_n+\frac{a}{x_n})]
  
-xSolve the previous exercise using guards+**2.4.** Implement ​the function ''​improve''​ which takes an estimate $math[x_n] of $math[\sqrt{a}] and improves it (computes $math[x_{n+1}]). 
 +<code scala> 
 +def improve(xn: Double, a: Double): Double = ??? 
 +</​code>​
  
-<<Explain lists, head, tail>>+**2.5.** Implement the function ''​nthGuess''​ which starts with $math[x_0 = 1] and computes the nth estimate $math[x_n] of $math[\sqrt{a}]:​ 
 +<code scala> 
 +def nth_guess(n:​ Int, a: Double): Double = ??? 
 +</code>
  
-xImplement reversal+Note that: 
 +  * for smaller $math[a], there is no need to compute $math[n] estimations as $math[(x_n)_n] converges quite fast to $math[\sqrt{a}] 
 +  
 +**2.6.** Thus, implement the function ''​acceptable''​ which returns ''​true''​ iff $math[\mid x_n^2 - a \mid \leq 0.001]. (Hint, google the ''​abs''​ function in Scala. Don't forget to import ''​scala.math._''​). 
 +<code scala> 
 +  def acceptable(xn:​ Double, a: Double): Boolean = ??? 
 +</​code>​
  
-13Write a function which extracts ​the third to last number from a list and returns ​''​True''​, if that number is odd (hint: ​the function ​''​mod'' ​may be useful) +**2.7.** Implement ​the function ​''​mySqrt'' ​which computes ​the square root of an integer ​''​a''​. Modify the previous implementations to fit the following code structure: 
-<​code>​ +<​code ​scala
-            V +def mySqrt(a: Double): Double = { 
-   f [3,​4,​5,​2,​3,​9] ​False +   def improve(xn: Double): Double ​??? 
-   f [3,​4,​2,​1,​4,​4] ​True+   def acceptable(xn:​ Double): Boolean ​??? 
 +    
 +   def tailSqrt(estimate:​ Double): Double = ??? 
 +    
 +   ??? 
 +}
 </​code>​ </​code>​
  
-<<​Explain pattern matching>>​ +**2.8(!) **  ​Try ​out your code for: ''​2.0e50'' ​(which is $math[2.0\cdot 10^{50}]) or ''​2.0e-50''​The code will likely take very long time to finishThe reason is that $math[xn^2 - a] will suffer from rounding error which may be larger ​than 0.001. Can you find a different implementation for the function ''​acceptable''​ which takes that into account? (Hint: the code is just as simple as the original one)
- +
-xImplement the previous exercise using patterns +
- +
-14Implement a function which returns the sum of integers from a list. +
- +
-15. Implement a function which takes a list of booleans and returns false if **at least** one boolean from the list is false. +
- +
-16. Implement a function which filters ​out all odd numbers from a list. +
- +
-17. Implement a function which takes a list of booleans and returns a list of integers. In the latter, (''​True''​ becomes ''​1''​ and ''​False''​ becomes ''​0''​)Example: ​''​[False, True, False] = [0,1,0]''​. +
- +
-<<​Explain char and strings>>​ +
- +
-xWrite function which removes all empty strings from a list. +
- +
-x. Write function ​which removes all strings of size smaller ​than 3Do **not** use the builtin ​function ''​length''​+
- +
-x. Write a function which removes all strings having the third letter equal to '​a'​. +
- +
-x. Write a function ​which: +
-    * removes all strings which are not **names**. A **name** always starts with an uppercase. +
-    * removes ​the last name from the resulting list of names. A name always comprises of the first name followed by the last name. +
- +