Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Next revision
Previous revision
fp:lab02 [2021/03/18 10:28]
pdmatei created
fp:lab02 [2023/03/10 10:16] (current)
pdmatei
Line 1: Line 1:
-===== Introduction ​to Haskell ​=====+====== 2. Scala syntax and function definition ====== 
 + 
 +** Objectives: ** 
 +  * get yourself familiar with Scala syntax basics 
 +  * practice writing **tail-recursive** functions as an alternative ​to imperative **loops**  
 +  * keep your code clean and well-structured. 
 + 
 +** Create a new Scala worksheet to write your solutions ** 
 + 
 + 
 +**2.1.** Write a tail-recursive function that computes the factorial of a natural number. Start from the code stub below: 
 + 
 +<code scala> 
 +def fact (n: Int): Int 
 +   def aux_fact(i: Int, acc: Int): Int  
 +       if (???) acc 
 +       else ??? 
 +   ??? 
 +
 +</​code>​ 
 + 
 +**2.2.** Implement a tail-recursive function that computes the greatest common divisor of a natural number: 
 + 
 +<code scala> 
 +def gcd(a: Int, b: Int): Int ??? 
 +</​code>​ 
 + 
 +**2.3.** Write a tail-recursive function takes an integer $math[n] and computes the value $math[1 + 2^2 + 3^2 + ... + (n-1)^2 + n^2]. (Hint: use inner functions). 
 + 
 +<code scala> 
 +def sumSquares(n:​ Int): Int ??? 
 +</​code>​ 
 + 
 +===== Newton'​s Square Root method ===== 
 + 
 +A very fast way to numerically compute $math[\sqrt{a}],​ often used as a standard //sqrt(.)// implementation,​ relies on Newton'​s Square Root approximation. The main idea relies on starting with an estimate (often 1), and incrementally improving the estimate. More precisely:​ 
 +  * Start with $math[x_0 = 1]. 
 +  * Compute $math[x_{n+1} = \displaystyle\frac{1}{2}(x_n+\frac{a}{x_n})] 
 + 
 +**2.4.** Implement the function ''​improve''​ which takes an estimate $math[x_n] of $math[\sqrt{a}] and improves it (computes $math[x_{n+1}]). 
 +<code scala> 
 +def improve(xn: Double, a: Double): Double = ??? 
 +</​code>​ 
 + 
 +**2.5.** Implement the function ''​nthGuess''​ which starts with $math[x_0 = 1] and computes the nth estimate $math[x_n] of $math[\sqrt{a}]:​ 
 +<code scala> 
 +def nth_guess(n:​ Int, a: Double): Double = ??? 
 +</​code>​ 
 + 
 +Note that: 
 +  * for smaller $math[a], there is no need to compute $math[n] estimations as $math[(x_n)_n] converges quite fast to $math[\sqrt{a}].  
 +  
 +**2.6.** Thus, implement the function ''​acceptable''​ which returns ''​true''​ iff $math[\mid x_n^2 - a \mid \leq 0.001]. (Hint, google the ''​abs''​ function in Scala. Don't forget to import ''​scala.math._''​). 
 +<code scala> 
 +  def acceptable(xn:​ Double, a: Double): Boolean = ??? 
 +</​code>​ 
 + 
 +**2.7.** Implement the function ''​mySqrt''​ which computes the square root of an integer ''​a''​. Modify the previous implementations to fit the following code structure:​ 
 +<code scala> 
 +def mySqrt(a: Double): Double = { 
 +   def improve(xn: Double): Double = ??? 
 +   def acceptable(xn:​ Double): Boolean = ??? 
 +    
 +   def tailSqrt(estimate:​ Double): Double = ??? 
 +    
 +   ??? 
 +
 +</​code>​ 
 + 
 +**2.8. (!) **  Try out your code for: ''​2.0e50''​ (which is $math[2.0\cdot 10^{50}]) or ''​2.0e-50''​. The code will likely take a very long time to finish. The reason is that $math[xn^2 - a] will suffer from rounding error which may be larger than 0.001. Can you find a different implementation for the function ''​acceptable''​ which takes that into account? (Hint: the code is just as simple as the original one).