Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
fp:homework01 [2023/03/21 20:10]
pdmatei
fp:homework01 [2023/03/22 08:44] (current)
pdmatei
Line 1: Line 1:
-====== ​H01Functional ​Sets ======+====== ​Homework 1. Sets as functions ​======
  
 ===== Problem statement ===== ===== Problem statement =====
Line 9: Line 9:
 In our implementation,​ $math[U] will be the set of integers, hence we shall encode only **sets of integers**. Hence, the type of a set will be: In our implementation,​ $math[U] will be the set of integers, hence we shall encode only **sets of integers**. Hence, the type of a set will be:
 <code scala> <code scala>
-type Set = Int => Boolean+Int => Boolean
 </​code>​ </​code>​
  
Line 29: Line 29:
 **1.** Write a function ''​singleton''​ which takes an integer and returns **the set** containing only that integer: **1.** Write a function ''​singleton''​ which takes an integer and returns **the set** containing only that integer:
 <code scala> <code scala>
-def singleton(x:​ Int): Set = ???+def singleton(x:​ Int): Int => Boolean ​= ???
 </​code>​ </​code>​
  
Line 37: Line 37:
 **2.** Write a function ''​member''​ which takes a set and an integer and checks if the integer is a member of the set. Note that ''​member''​ should be defined and called as a curry function: **2.** Write a function ''​member''​ which takes a set and an integer and checks if the integer is a member of the set. Note that ''​member''​ should be defined and called as a curry function:
 <code scala> <code scala>
-def member(e: Int)(setSet): Boolean = ???+def member(set: Int => Boolean)(eInt): Boolean = ???
 </​code>​ </​code>​
  
Line 43: Line 43:
  
 <code scala> <code scala>
-def fromBounds(start:​ Int, stop: Int): Set = ???+def fromBounds(start:​ Int, stop: Int): Int => Boolean ​= ???
 </​code>​ </​code>​
  
-**5.** Write the function which performs the union of two sets:+**4.** Write function which performs the intersection ​of two sets:
 <code scala> <code scala>
-def union(set1: ​Set, set2: Set): Set = ???+def intersection(set1: ​Int => Boolean, set2: Int => Boolean): Int => Boolean ​= ???
 </​code>​ </​code>​
  
-**6.** Write function which computes the complement of a set with respect to the set of integers:+**5.** Write the function which performs ​the union of two sets:
 <code scala> <code scala>
-def complement(s1Set): Set = ???+def union(set1Int => Boolean, set2: Int => Boolean): Int => Boolean ​= ???
 </​code>​ </​code>​
  
-**6.** Write a function which computes the sum of value ''​b''​ to all elements from a set, for given **bounds**. Use a tail-end recursive function:+**6.** Write a function which computes the sum of all elements from a set, for given **bounds**. Use a tail-end recursive function:
 <code scala> <code scala>
-  def sumSet(b: Int)(start: Int, stop: Int)(set: Set): Int = {+  def sumSet(start:​ Int, stop: Intset: Int => Boolean): Int = {
     def auxSum(crt: Int, acc: Int): Int = ???     def auxSum(crt: Int, acc: Int): Int = ???
     ???     ???
Line 64: Line 64:
 </​code>​ </​code>​
  
-**7.** Generalise the previous function such that we can **fold** a set using any binary commutative operation over integers. Make sure this is a **left** foldFolding the set: ''​{x,​y,​z}''​ with ''​b''​ should produce: ''​( (b op x) op y) op z''​+**7.** Generalise the previous function such that we can **fold** a set using any binary commutative operation over integers:
 <code scala> <code scala>
-  def foldLeftSet +  def foldSet( 
-  ​(b:Int)                  ​// initial value  +               start: Int,            ​// bounds ​(inclusive) 
-  ​(op: (Int,Int) => Int)   // folding operation +               stop: Int, 
-  ​(start: Int, stop: Int)  ​// bounds (inclusive) +               op: (Int, Int) => Int// folding operation 
-  (set: Set): Int = ???    // the set to be folded+               initial: Int,          // initial value  
 +               ​set: Int => Boolean ​   // the set to be folded 
 +             ): Int = ???
 </​code>​ </​code>​
  
-**7.** Implement ​an alternative to the previous ​function, namely **foldRight**. Applying ​''​foldRight'' ​on the set ''​{x,​y,​z}''​ with ''​b''​ should produce: ''​op (b op (c op b))''​. Use direct recursion instead of tail recursion.+**8.** Implement ​function ''​forall'' ​which checks if all elements in a given range of a set satisfy ​predicate ​(condition). ​(Such a condition may be that all elements from given bounds are even numbers).
 <code scala> <code scala>
-  def foldRightSet +  def forall( 
-  ​(b:Int)                  ​// initial ​value  +              start: Int// start value (inclusive) 
-  ​(op(Int,Int) => Int)   // folding operation +              stop: Int, // stop value (inclusive) 
-  ​(start: Int, stop: Int)  ​// bounds (inclusive) +              condition: Int => Boolean, // condition to be checked 
-  (set: Set): Int = ???    ​// the set to be folded+              set: Int => Boolean ​// set to be checked 
 +            ): Boolean = ???
 </​code>​ </​code>​
  
-**X.** Implement ​operation ​''​filter''​ which takes a set and returns another one containing only those elements that satisfy ​the predicate:+**9.** Implement ​a function ​''​exists''​ which checks if a predicate holds for **some** element from the range of a set. Hint: it is easier to implement ''​exists''​ using the logical relation$math[ \exists x. P(X) \iff \lnot \forall x.\lnot P(X)].
 <code scala> <code scala>
-def filter(p: Int => Boolean)(set: Set): Set = ???+  /* implement a function exists, using forall */ 
 +  ​def exists( 
 +              start: Int, // start value (inclusive) 
 +              stop: Int, // stop value (inclusive) 
 +              condition: Int => Boolean, // condition to be checked 
 +              ​set: Int => Boolean // set 
 +            ​): Boolean ​= ???
 </​code>​ </​code>​
- 
-**X.** Implement a function which **partitions** a set into two sets. The left-most contains those elements that satisfy the predicate, while the right-most contains those elements that do not satisfy the predicate. Use pairs. A pair is constructed with simple parentheses:​ ''​(1,​2)''​. Suppose ''​val p: (Int,​Int)''​ is a pair of two integers. Then ''​p._1''​ is the left-most part of the pair while ''​p._2''​ is the right-most part of the pair. 
-<code scala> 
-  def partition(p:​ Int => Boolean)(set:​ Set): (Set,Set) = ??? 
-</​code>​ 
- 
-**8.** Implement a function ''​forall''​ which checks if all elements in a given range of a set satisfy a predicate (condition). (Such a condition may be that all elements from given bounds are even numbers). 
-<code scala> 
-  def forall(cond:​ Int => Boolean) // condition to be checked 
-            (start: Int, stop: Int) // start,stop values (inclusive) 
-            (set: Set): Boolean ​ // set to be checked 
-            = ??? 
-</​code>​ 
- 
-**9.** Implement a function ''​exists''​ which checks if a predicate holds for **some** element from the range of a set. Hint: it is easier to implement ''​exists''​ using the logical relation: $math[ \exists x. P(X) \iff \lnot \forall x.\lnot P(X)]. 
- 
-**X**