Differences
This shows you the differences between two versions of the page.
| Both sides previous revision Previous revision | |||
|
aa:lab:sol:7 [2025/11/16 18:33] aureliu.antonie add subpunct 1 |
aa:lab:sol:7 [2025/11/16 23:00] (current) aureliu.antonie edit substitie 2 |
||
|---|---|---|---|
| Line 13: | Line 13: | ||
| * $ T_c(n) = 2T_c(n/2) + \log(n)$ | * $ T_c(n) = 2T_c(n/2) + \log(n)$ | ||
| - | ** Metoda substitutiei TODO** \\ | + | ** Metoda substitutiei** \\ |
| Vrem sa demonstram ca $ T_c(n) = \Theta(n), \ presupunem \ T_c(1) = 1$ \\ | Vrem sa demonstram ca $ T_c(n) = \Theta(n), \ presupunem \ T_c(1) = 1$ \\ | ||
| - | $ <=> \exists k_1, k_2 > 0 $ a.i. $ k_1 n \le T_c(n) \le k_2 n$\\ | + | $ <=> \exists c_1, c_2 > 0 $ a.i. $ c_1 n \le T_c(n) \le c_2 n$\\ |
| - | Caz de baza: n = 2 \\ | + | $ Ca \ sa \ demonstram \ ca \ T_c(n) = \Theta(n), \ vom \ demonstra \ ca \ T_c(n) = O(n) \ (1) \ si \ T_c(n) = \Omega(n) \ (2)$\\ |
| - | $ c_1 * 2 \le T_c(2) \le c_2 * 2 $\\ | + | (2) Caz de baza: n = 16 \\ |
| - | $ c_1 * 2 \le 2 * T_c(1) + \log 2 \le c_2 * 2 $\\ | + | $ c_1 * 16 \le T_c(16)$\\ |
| - | $ c_1 * 2 \le 3 \le c_2 * 2 $\\ | + | $ c_1 * 16 \le 42 $ \\ |
| - | (A) pentru $ c_1 = 1 $ si $ c_2 = 2 $\\ | + | $ => c_1 \le \frac{21}{8} $\\ |
| - | Pasul inductiv: \\ | + | $ (2) \ Pas \ inductiv $\\ |
| - | Presupunem $ T_c(\frac n 2) = \Theta(\frac n 2) $ \\ | + | $ Presupunem \ ca \ T_c(n/2) = \Omega(n/2) $\\ |
| - | $ \exists c_1, c_2 > 0 $ a.i. \\ | + | $ <=> \ \exists c_1 > 0 \ a.i. \ c_1 * \frac{n}{2} \le T_c(n/2) $\\ |
| - | $ c_1 \frac n 2 \le T_c(\frac n 2) \le c_2 \frac n 2 \ \ \ \ | *2 $\\ | + | $ <=> c_1 * n \le 2 * T_c(n/2) $\\ |
| - | $ c_1 * n \le 2 * T_c(\frac n 2) \le c_2 * n \ \ \ \ | + \log n $\\ | + | $ <=> c_1 * n + \log n\le T_c(n) $\\ |
| - | $ c_1 * n + \log n \le T_c(n)\le c_2 * n + \log n $\\ | + | $ <=> c_1 * n \le c_1 * n + \log n\le T_c(n) $\\ |
| - | $ pentru\ k_1 = c_1 => k1n \le c_1n + \log n $\\ | + | $ => \ T_c(n) = \Omega(n) $\\ |
| - | $ pentru\ k_2 = c_2 + 1 => c_2n + \log n \le k2 * n $\\ | + | $ (1) Pentru \ usurinta, \ vom \ demonstra \ restrictia \ T_c(n) \le c_2 n - 2 \log n $\\ |
| - | $ \qquad \qquad \qquad \qquad \: <=> c_2n + \log n \le (c_2 + 1) * n $\\ | + | (1) Caz de baza: n = 16 \\ |
| - | $ => k_1 * n \le c_1 * n + \log n \le T_c(n)\le c_2 * n + \log n \le k_2 * n $\\ | + | $ T_c(16) \le c_2 * 16 - 2 * \log 16 $\\ |
| + | $ 42 \le c_2 * 16 - 8 $ \\ | ||
| + | $ => c_2 \ge \frac{25}{8} $\\ | ||
| + | $ (1) \ Pas \ inductiv $\\ | ||
| + | $ Presupunem \ ca \ T_c(n/2) \le c_2 * \frac{n}{2} - 2 * \log \frac{n}{2} $\\ | ||
| + | $ <=> 2 * T_c(n/2) \le c_2 * n - 4 * \log \frac{n}{2} $\\ | ||
| + | $ <=> T_c(n) \le c_2 * n - 3 * \log n + 4$\\ | ||
| + | $ <=> T_c(n) \le c_2 * n - 3 * \log n + 4 \le c_2 * n - 2 * \log n, \forall n \ge 16 $\\ | ||
| + | $ => \ T_c(n) = O(n) $\\ | ||
| $ T_c(n) \in \Theta(n) $\\ | $ T_c(n) \in \Theta(n) $\\ | ||
| ** Teorema Master ** \\ | ** Teorema Master ** \\ | ||