Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
aa:lab:notations [2016/11/02 18:09]
dalex [Syntactic sugars]
aa:lab:notations [2016/11/02 18:18] (current)
dalex
Line 109: Line 109:
 Let $math[f(n) = \log(n)] and $math[g(n) = n]\\ Let $math[f(n) = \log(n)] and $math[g(n) = n]\\
 We see that, for $math[c = 1, n_0 = 1 \Rightarrow 0 \le \log(n) \le n]\\ We see that, for $math[c = 1, n_0 = 1 \Rightarrow 0 \le \log(n) \le n]\\
-for $math[c = 10, n_0 = 64 \Rightarrow 0 \le 10\+for $math[c = 10, n_0 = 64 \Rightarrow 0 \le 10 \log(n) \le n]\\ 
-og(n) \le n]\\ +for $math[c = 100, n_0 = 1024 \Rightarrow 0 \le 100 \log(n) \le n]\\
-for $math[c = 100, n_0 = 1024 \Rightarrow 0 \le 100\log(n) \le n]\\+
 etc.\\ etc.\\
 Thus, $math[g(n) \in \omega(f(n))] Thus, $math[g(n) \in \omega(f(n))]
Line 153: Line 152:
   * $math[\log(n\cdot \log(n))\in\Theta(\log(n))]   * $math[\log(n\cdot \log(n))\in\Theta(\log(n))]
   * $math[\sqrt{n}\in\omega(\log(n))]   * $math[\sqrt{n}\in\omega(\log(n))]
-  * $math[f(n) + g(n) \in O(n\cdot\log(n))for $f(n)\in\Theta(n)and $g(n)\in O(n\cdot\log n)]+  * $math[f(n) + g(n) \in O(n\cdot\log(n))for $math[f(n)\in\Theta(n)and $math[g(n)\in O(n\cdot\log n)]
  
 ===== Exercises (syntactic sugars) ===== ===== Exercises (syntactic sugars) =====