Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
aa:lab:10 [2023/12/30 19:24]
stefan.sterea
aa:lab:10 [2025/01/23 14:10] (current)
dmihai
Line 15: Line 15:
 In functie de $ f(n) $ apar urmatoarele cazuri: In functie de $ f(n) $ apar urmatoarele cazuri:
   - $ f(n) = \Theta(n^c) ; c < \log_ba $                                  $ \Rightarrow T(n) = \Theta(n^{\log_ba}) $    - $ f(n) = \Theta(n^c) ; c < \log_ba $                                  $ \Rightarrow T(n) = \Theta(n^{\log_ba}) $ 
-  - $ f(n) = \Theta(n^c * \log^kn); k \geq 0; c = \log_ba $  ​    $ \Rightarrow T(n) = \Theta(n^{\log_ba}*\log^{k+1}n) $+  - $ f(n) = \Theta(n^c * \log^kn); k \geq 0; c = \log_ba $  ​     ​        $ \Rightarrow T(n) = \Theta(n^{\log_ba}*\log^{k+1}n) $
   - $ f(n) = \Theta(n^c);​ c > \log_ba $                                   $ \Rightarrow T(n) = \Theta(f(n)) $      - $ f(n) = \Theta(n^c);​ c > \log_ba $                                   $ \Rightarrow T(n) = \Theta(f(n)) $   
 </​note> ​ </​note> ​
Line 80: Line 80:
  
 5. Rezolvați următoarea recurență folosind metoda arborilor: $math[T(n) = T(] $math[n \over 4] $math[) + T(] $math[3n \over 4] $math[) + n]. 5. Rezolvați următoarea recurență folosind metoda arborilor: $math[T(n) = T(] $math[n \over 4] $math[) + T(] $math[3n \over 4] $math[) + n].
 +
 +
 +<​note>​
 +Soluțiile acestui laborator se găsesc [[https://​ocw.cs.pub.ro/​ppcarte/​doku.php?​id=aa:​lab:​sol:​10|aici]]
 +</​note>​