Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
aa:lab:05 [2020/11/09 10:08]
pdmatei
aa:lab:05 [2020/11/15 13:11] (current)
fabianpatras
Line 1: Line 1:
-====== Lab 05 - Asymptotic notations ======+====== Lab 06 - Asymptotic notations ======
  
  
Line 12: Line 12:
 ==== 2. Properties of asymptotic notations ==== ==== 2. Properties of asymptotic notations ====
  
-**2.1** Prove that if $math[lim] $math[g(n) \over f(n)] $math[= 0] implies that $math[g(n) \in o(f(n))], for n reaching infinity. Hint: use the "​epsilon"​ or "​Cauchy"​ limit definition for sequences.+**2.1** Prove that if $math[lim_{n\rightarrow \infty}] $math[g(n) \over f(n)] $math[= 0] implies that $math[g(n) \in o(f(n))], for n reaching infinity. Hint: use the "​epsilon"​ or "​Cauchy"​ limit definition for sequences.
  
 **2.2** Prove that $math[f(n) \in Ω(log(n))] and $math[g(n) \in O(n)] implies $math[f(n) \in Ω(log(g(n)))]. **2.2** Prove that $math[f(n) \in Ω(log(n))] and $math[g(n) \in O(n)] implies $math[f(n) \in Ω(log(g(n)))].