
2025/11/25 02:10 1/10 Remote Weather Station - NIŢU Gabriel

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Remote Weather Station - NIŢU Gabriel

Introducere

Proiectul consta intr-o statie meteo remote care aduna informatii despre temperatura, umiditate,
presiunea atmosferica, nivelul de intensitate luminoasa si predictie a ploii si transmite toate aceste
date prin wifi catre un webserver. Webserverul le afiseaza intr-un mod interactiv si usor de vizualizat
si analizat pe un dashboard.

Varianta finala si functionala a proiectului se poate vedea pe urmatorul link
https://youtu.be/XK-8px-DiMA?feature=shared

Descriere generală

Schema bloc

Hardware Design

Listă de piese●

Componenta Cantitate Link
Placa de
Dezvoltare
ESP32 cu WiFi
și Bluetooth
4.2

1 https://www.optimusdigital.ro/ro/placi-cu-bluetooth/4371-placa-de-dezvoltare-esp32-cu-wifi-i-bluetooth-42.html?search_query=Placa+de+Dezvoltare+ESP32+cu+WiFi+%C8%99i+Bluetooth+4.2+&results=8

Placa de
Dezvoltare
Compatibila
cu Arduino
UNO R3

1 https://www.optimusdigital.ro/ro/placi-avr/4561-placa-de-dezvoltare-compatibila-cu-arduino-uno-r3-atmega328p-atmega16u2-cablu-50-cm.html?search_query=arduino+uno&results=129

Modul senzor
de
Temperatura
si Presiune
BMP180

1 https://www.optimusdigital.ro/ro/senzori-senzori-de-presiune/149-modul-senzor-de-temperatura-si-presiune-bmp180.html?search_query=bmp180&results=7

Senzor de
Temperatura
și Umiditate
DHT22

1 https://www.optimusdigital.ro/ro/senzori-senzori-de-temperatura/1199-senzor-de-temperatura-i-umiditate-dht22.html?search_query=dht+22&results=25

Level Shifter
cu 2 canale 2 https://www.optimusdigital.ro/ro/interfata-convertoare-de-niveluri/12562-convertor-de-nivel-logic-cu-2-canale-33v-5v-ttl.html?search_query=convertor+de+nivel&results=32

Breadboard 1 https://www.optimusdigital.ro/ro/prototipare-breadboard-uri/44-breadboard-400-points.html?search_query=breadboard&results=125

Schema electrica

Cablajul

https://youtu.be/XK-8px-DiMA?feature=shared
https://www.optimusdigital.ro/ro/placi-cu-bluetooth/4371-placa-de-dezvoltare-esp32-cu-wifi-i-bluetooth-42.html?search_query=Placa de Dezvoltare ESP32 cu WiFi și Bluetooth 4.2 &results=8
https://www.optimusdigital.ro/ro/placi-avr/4561-placa-de-dezvoltare-compatibila-cu-arduino-uno-r3-atmega328p-atmega16u2-cablu-50-cm.html?search_query=arduino uno&results=129
https://www.optimusdigital.ro/ro/senzori-senzori-de-presiune/149-modul-senzor-de-temperatura-si-presiune-bmp180.html?search_query=bmp180&results=7
https://www.optimusdigital.ro/ro/senzori-senzori-de-temperatura/1199-senzor-de-temperatura-i-umiditate-dht22.html?search_query=dht 22&results=25
https://www.optimusdigital.ro/ro/interfata-convertoare-de-niveluri/12562-convertor-de-nivel-logic-cu-2-canale-33v-5v-ttl.html?search_query=convertor de nivel&results=32
https://www.optimusdigital.ro/ro/prototipare-breadboard-uri/44-breadboard-400-points.html?search_query=breadboard&results=125
http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/fstancu/schematic_savcxsa_2025-05-19_1_.png?id=pm:prj2025:fstancu:gabriel.nitu0912
http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/fstancu/whatsapp_image_2025-05-28_at_00.41.43_fa6385cf.jpg?id=pm:prj2025:fstancu:gabriel.nitu0912

Last update: 2025/05/27 23:26 pm:prj2025:fstancu:gabriel.nitu0912 http://ocw.cs.pub.ro/courses/pm/prj2025/fstancu/gabriel.nitu0912

http://ocw.cs.pub.ro/courses/ Printed on 2025/11/25 02:10

Software Design

Mediul de dezvoltare:

Arduino IDE●

VS Code●

Pe Arduino am implementat citirea senzorului DHT si trimiterea informatiilor catre ESP32.

SoftwareSerial espSerial(rxPin, txPin);

void setup() {
 pinMode(rxPin, INPUT);
 pinMode(txPin, OUTPUT);

2025/11/25 02:10 3/10 Remote Weather Station - NIŢU Gabriel

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

 Serial.begin(9600);
 espSerial.begin(9600);
 dht.begin();
}

void loop() {
 Serial.println("Sending to ESP32...");
 int16_t value = 1234;

 float humidity = dht.readHumidity();
 float temperature = dht.readTemperature();

 if (isnan(humidity) || isnan(temperature)) {
 Serial.println("Failed to read from DHT sensor!");
 return;
 }

 espSerial.println(temperature);
 espSerial.println(humidity);

 Serial.print("Humidity: ");
 Serial.print(humidity);
 Serial.print(" %\t");

 Serial.print("Temperature: ");
 Serial.print(temperature);
 Serial.println(" *C");

 delay(2000);
}

Pe ESP32 citesc informatiile de la senzorul bmp, primesc datele de la Arduino si le trimit pe toate prin
Wifi catre un server implementat de mine.

void setup() {
 Serial.begin(9600); // For Serial Monitor
 Serial2.begin(9600, SERIAL_8N1, RXD2, TXD2); // UART2
 int counter = 0;

 delay(2000); // Wait for power to stabilize
 WiFi.disconnect(true); // Clear previous settings
 delay(1000);

 Serial.println("Scanning Wi-Fi...");
 int networks = WiFi.scanNetworks();

 if (networks == 0) {
 Serial.println("No networks found.");

Last update: 2025/05/27 23:26 pm:prj2025:fstancu:gabriel.nitu0912 http://ocw.cs.pub.ro/courses/pm/prj2025/fstancu/gabriel.nitu0912

http://ocw.cs.pub.ro/courses/ Printed on 2025/11/25 02:10

 } else {
 Serial.println("Networks found:");
 for (int i = 0; i < networks; ++i) {
 Serial.println(WiFi.SSID(i));
 }
 }

 WiFi.begin(ssid, password);
 Serial.print("Connecting to Wi-Fi");
 while (WiFi.status() != WL_CONNECTED) {
 delay(500);
 Serial.print(".");
 }
 Serial.println(" Connected!");

 Wire.begin(21, 22); // SDA = 21, SCL = 22
 if (!bmp.begin()) {
 Serial.println("Could not find a valid BMP180 sensor, check wiring!");
 while (1) {}
 }

}

void loop() {
 while (Serial2.available() > 0) {
 Serial2.read();
 }
 delay(2000);
 String temperature = "";
 String humidity = "";

 temperature = Serial2.readStringUntil('\n'); // Read first line
 temperature.trim();

 humidity = Serial2.readStringUntil('\n'); // Read second line
 humidity.trim();

 float p = bmp.readPressure();
 String pressure = String(p);

 float a = bmp.readAltitude();
 String altitude = String(a);

 if (WiFi.status() == WL_CONNECTED) {
 HTTPClient http;
 http.begin(serverURL);
 http.addHeader("Content-Type", "application/json");

 String jsonPayload = "{\"temperature\":" + temperature +

2025/11/25 02:10 5/10 Remote Weather Station - NIŢU Gabriel

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

 ",\"humidity\":" + humidity +
 ",\"pressure\":" + pressure +
 ",\"altitude\":" + altitude +
 "}";
 Serial.println(jsonPayload);
 int httpResponseCode = http.POST(jsonPayload);
 Serial.println("HTTP Response code: " + String(httpResponseCode));

 String response = http.getString();
 Serial.println("Server response: " + response);

 if (httpResponseCode > 0) {
 String response = http.getString();
 Serial.println(httpResponseCode);
 Serial.println(response);
 } else {
 Serial.print("Error in sending POST: ");
 Serial.println(http.errorToString(httpResponseCode).c_str());
 }

 http.end();
 }

}

Am implementat un server in Python folosind Flask, aceasta fiind partea de backend.

from flask import Flask, request, jsonify, render_template
from datetime import datetime

app = Flask(__name__)

latest_data = {
 "temperature": None,
 "humidity": None,
 "pressure": None,
 "timestamp": None
}

@app.route('/')
def index():
 return render_template('index.html')

@app.route('/update', methods=['GET'])
def get_data():
 return jsonify(latest_data)

@app.route('/data', methods=['POST'])

Last update: 2025/05/27 23:26 pm:prj2025:fstancu:gabriel.nitu0912 http://ocw.cs.pub.ro/courses/pm/prj2025/fstancu/gabriel.nitu0912

http://ocw.cs.pub.ro/courses/ Printed on 2025/11/25 02:10

def receive_data():
 data = request.get_json(force=True)
 if data:
 latest_data["temperature"] = float(data.get("temperature", 0))
 latest_data["humidity"] = float(data.get("humidity", 0))
 latest_data["pressure"] = float(data.get("pressure", 0))
 latest_data["timestamp"] = datetime.now().strftime("%H:%M:%S")
 return jsonify({"status": "success"}), 200
 return jsonify({"status": "fail"}), 400

if __name__ == '__main__':
 app.run(host='0.0.0.0', port=5000)

Pentru a vizualiza datele in mod real intr-un mod cat mai placut si interactiv, am imple,mentat si
partea de frontend a serverului, in HTML si JavaScript.

HTML:

<!DOCTYPE html>
<html>
<head>
 <meta charset="UTF-8">
 <title>Sensor Dashboard</title>
 <script src="https://cdn.jsdelivr.net/npm/chart.js"></script>
 <script
src="https://cdn.jsdelivr.net/npm/chartjs-plugin-streaming"></script>
 <script
src="https://cdn.jsdelivr.net/npm/@bernaferrari/gauge-chart"></script>
 <script defer src="/static/script.js"></script>
 <style>
 body { font-family: sans-serif; text-align: center; padding: 20px;
background: #f5f5f5; }
 h1 { color: #333; }
 .container { display: flex; flex-wrap: wrap; justify-content: center;
gap: 20px; }
 .card { background: white; padding: 20px; border-radius: 10px;
box-shadow: 0 4px 10px rgba(0,0,0,0.1); }
 canvas { max-width: 600px; }
 .gauge-container { width: 250px; height: 150px; margin: auto; }
 </style>
</head>
<body>
 <h1>�️ Real-Time Sensor Dashboard</h1>

 <div class="container">
 <div class="card">
 <h3>Temperature Gauge</h3>
 <div id="gauge-temp" class="gauge-container"></div>
 <p>Temp: -- °C</p>
 </div>

2025/11/25 02:10 7/10 Remote Weather Station - NIŢU Gabriel

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

 <div class="card">
 <h3>Humidity Gauge</h3>
 <div id="gauge-hum" class="gauge-container"></div>
 <p>Humidity: -- %</p>
 </div>
 </div>

 <div class="container">
 <div class="card">
 <h3>Temperature - Last 10 Minutes</h3>
 <canvas id="chart-temp" height="100"></canvas>
 </div>

 <div class="card">
 <h3>Humidity - Last 10 Minutes</h3>
 <canvas id="chart-hum" height="100"></canvas>
 </div>
 </div>

 <div class="card">
 <h3>Pressure</h3>
 <p>� Pressure: -- Pa</p>
 <p>⏱️ Time: --:--:--</p>
 </div>
</body>
</html>

JavaScript:

const tempSpan = document.getElementById('temp');
const humSpan = document.getElementById('hum');
const presSpan = document.getElementById('pres');
const timeSpan = document.getElementById('time');

const gaugeTemp =
GaugeChart.gaugeChart(document.getElementById("gauge-temp"), {
 arcDelimiters: [0.3, 0.6, 1],
 arcColors: ["#00bfff", "#ffa500", "#ff0000"],
 arcLabels: ["Low", "Medium", "High"],
 rangeLabel: ["0°C", "50°C"],
 centralLabel: ""
});

const gaugeHum = GaugeChart.gaugeChart(document.getElementById("gauge-hum"),
{
 arcDelimiters: [0.3, 0.6, 1],
 arcColors: ["#add8e6", "#00ced1", "#007bff"],
 arcLabels: ["Dry", "Moderate", "Humid"],
 rangeLabel: ["0%", "100%"],
 centralLabel: ""
});

Last update: 2025/05/27 23:26 pm:prj2025:fstancu:gabriel.nitu0912 http://ocw.cs.pub.ro/courses/pm/prj2025/fstancu/gabriel.nitu0912

http://ocw.cs.pub.ro/courses/ Printed on 2025/11/25 02:10

const ctxTemp = document.getElementById('chart-temp').getContext('2d');
const ctxHum = document.getElementById('chart-hum').getContext('2d');

const tempChart = new Chart(ctxTemp, {
 type: 'line',
 data: {
 datasets: [{
 label: 'Temperature (°C)',
 borderColor: 'rgba(255, 99, 132, 1)',
 backgroundColor: 'rgba(255, 99, 132, 0.2)',
 data: []
 }]
 },
 options: {
 plugins: {
 streaming: {
 frameRate: 30
 }
 },
 scales: {
 x: {
 type: 'realtime',
 realtime: {
 duration: 600000,
 refresh: 2000,
 delay: 2000,
 onRefresh: async chart => {
 await fetchAndUpdate(chart, 'temperature');
 }
 }
 },
 y: {
 beginAtZero: true
 }
 }
 }
});

const humChart = new Chart(ctxHum, {
 type: 'line',
 data: {
 datasets: [{
 label: 'Humidity (%)',
 borderColor: 'rgba(54, 162, 235, 1)',
 backgroundColor: 'rgba(54, 162, 235, 0.2)',
 data: []
 }]
 },
 options: {
 plugins: {
 streaming: {

2025/11/25 02:10 9/10 Remote Weather Station - NIŢU Gabriel

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

 frameRate: 30
 }
 },
 scales: {
 x: {
 type: 'realtime',
 realtime: {
 duration: 600000,
 refresh: 2000,
 delay: 2000,
 onRefresh: async chart => {
 await fetchAndUpdate(chart, 'humidity');
 }
 }
 },
 y: {
 beginAtZero: true
 }
 }
 }
});

async function fetchAndUpdate(chart, type) {
 try {
 const res = await fetch('/update');
 const data = await res.json();
 const now = Date.now();

 if (type === 'temperature') {
 chart.data.datasets[0].data.push({ x: now, y: data.temperature });
 } else if (type === 'humidity') {
 chart.data.datasets[0].data.push({ x: now, y: data.humidity });
 }

 // Update UI
 tempSpan.textContent = data.temperature?.toFixed(1) ?? '--';
 humSpan.textContent = data.humidity?.toFixed(1) ?? '--';
 presSpan.textContent = data.pressure ?? '--';
 timeSpan.textContent = data.timestamp ?? '--';

 if (data.temperature != null) {
 gaugeTemp.update({ percent: Math.min(data.temperature / 50, 1) });
 }
 if (data.humidity != null) {
 gaugeHum.update({ percent: Math.min(data.humidity / 100, 1) });
 }
 } catch (err) {
 console.error("Fetch error:", err);
 }
}

Last update: 2025/05/27 23:26 pm:prj2025:fstancu:gabriel.nitu0912 http://ocw.cs.pub.ro/courses/pm/prj2025/fstancu/gabriel.nitu0912

http://ocw.cs.pub.ro/courses/ Printed on 2025/11/25 02:10

Rezultate Obţinute

Rezultatele obtinute in acest proiect se pot vedea pe urmatorul link:
https://youtu.be/XK-8px-DiMA?feature=shared

Concluzii

Proiectul Remote Weather Station demonstreaza o solutie eficienta si accesibila pentru monitorizarea
conditiilor meteorologice in timp real. Am invatat foarte multe lucruri lucrand la acest proiect, de la
cum legi toate perifericele si le conectezi intre ele, pana la ce cod scrii pentru a face ceea ce iti propui.

Bibliografie/Resurse

Resurse hardware

Datasheet BME280 (Bosch):●

https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
Datasheet DHT22: https://cdn.sparkfun.com/assets/f/7/d/9/c/DHT22.pdf●

Datasheet ESP32:●

https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf

Resurse software

Documentație oficială Arduino: https://www.arduino.cc/●

Bibliotecă Adafruit Sensor: https://github.com/adafruit/Adafruit_Sensor●

Connect ESP32 to wifi: https://www.electronicwings.com/esp32/esp32-wi-fi-basics-getting-started●

Biblioteca Wifi: https://docs.arduino.cc/libraries/wifi/●

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link:
http://ocw.cs.pub.ro/courses/pm/prj2025/fstancu/gabriel.nitu0912

Last update: 2025/05/27 23:26

https://youtu.be/XK-8px-DiMA?feature=shared
https://www.bosch-sensortec.com/products/environmental-sensors/humidity-sensors-bme280/
https://cdn.sparkfun.com/assets/f/7/d/9/c/DHT22.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32_datasheet_en.pdf
https://www.arduino.cc/
https://github.com/adafruit/Adafruit_Sensor
https://www.electronicwings.com/esp32/esp32-wi-fi-basics-getting-started
https://docs.arduino.cc/libraries/wifi/
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/pm/prj2025/fstancu/gabriel.nitu0912

	Remote Weather Station - NIŢU Gabriel
	Introducere
	Descriere generală
	Hardware Design
	Software Design
	Rezultate Obţinute
	Concluzii
	Bibliografie/Resurse

