
2025/06/05 11:55 1/14 PianoBit

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

PianoBit

Group: 331CA
Student: Mara Fichioș

Project Summary: The PianoBit project is an innovative and educational digital mini-piano that
utilizes an Arduino Uno as the core control unit. Designed to mimic the functionality of a basic piano,
the system includes a 4×4 button matrix, a set of 16 LEDs, an active buzzer, and an LCD screen. The
aim of the project is to build a simple, interactive musical instrument while exploring various
hardware techniques such as button matrix scanning, LED multiplexing, and sound generation.

General Description

PianoBit is a digital mini-piano constructed using an Arduino Uno, a 4×4 matrix of buttons, 16●

corresponding LEDs, and an active buzzer.
The core objective of the project is to emulate the behavior of a basic electronic piano with 16 keys.●

It is designed to explore efficient hardware management using direct multiplexing, thus eliminating
the need for dedicated shift registers.
Originally envisioned as an 8-key prototype, the design was expanded to 16 keys in order to mirror●

the octave structure of a real instrument more closely and to meet the increased complexity
requirements specified in the course. The new version also has an LCD which showcases the user
the current note that they are playing.
The system provides a practical and educational platform for understanding key matrix scanning,●

LED multiplexing, and sound generation, while also working with registers and Arduino.

The block diagram illustrates how the core modules of the PianoBit project are functionally
interconnected to achieve real-time user interaction. At the center of the system lies the Arduino Uno,
which acts as the main control unit. It manages data flow between input and output modules,
orchestrating the behavior of the piano. The button matrix connects directly to the Arduino's digital
pins, and the Arduino detects exactly which key has been pressed. This key is translated into a
musical note. Once a key is identified, the Arduino triggers two parallel outputs: it sends a
corresponding frequency signal to the buzzer, generating an audible tone and it lights up the
matching LED by transmitting data serially to the shift registers. These convert the serial input into
parallel output, illuminating the specific LED assigned to the pressed key.

Simultaneously, the Arduino communicates with the I2C LCD display to visually show the name of the
note being played. This communication happens via the I2C protocol using only two data lines (SCL

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/schema_bloc_pianobit2.drawio.png?id=pm:prj2025:eradu:mara.fichios

Last update: 2025/05/24 14:12 pm:prj2025:eradu:mara.fichios http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/05 11:55

and SDA), allowing the LCD to operate without consuming multiple digital I/O pins.All modules draw
power from a shared 5V supply. This architecture ensures that pressing a single key results in
synchronized audio, visual, and textual feedback, making the PianoBit both interactive and
educational.

Hardware Design

Component List:

Component Quantity Description
Arduino Uno 1 Microcontroller for project control
Buttons 16 16 buttons arranged in a matrix configuration
74HC595 Shift Register 2 Serial-to-parallel shift registers for controlling LEDs
LEDs 16 LED indicators to correspond to each key
220Ω Resistors 16 Current limiting resistors for LEDs
Buzzer 1 Passive Buzzer for sound output
Breadboard 4 For connecting components without soldering
Jumper Wires Multiple For making connections between components
I2C LCD 1 Displays message for user

Overview on hardware:

Button Matrix: the 4×4 button matrix uses multiplexing to reduce the number of pins needed on●

the Arduino. Each row pin is connected to a digital output pin, and each column pin is connected to
a digital input pin. When a row is activated, the Arduino checks if any button in the corresponding
column is pressed. The button matrix is multiplexed, meaning we scan one row at a time while the
others are inactive.
Shift registers: the 74HC595 shift registers are used to control the 16 LEDs. These shift registers●

use the Serial Data Input (DS) to receive data, the Shift Register Clock Pin (SH_CP) to clock the data
in, and the Latch Pin (ST_CP) to latch the data into the shift register. The Arduino sends 8-bit data to
the shift registers, which control the state of the LEDs (on or off). The LEDs are arranged in two
groups of 8, each controlled by a separate shift register. By connecting the shift registers in daisy
chain, the second shift register is controlled by the first one, effectively expanding the number of
outputs.
LEDs: 16 LEDs are divided into two groups of 8, each controlled by a separate 74HC595 shift●

register. The shift registers are connected in daisy chain mode, allowing the Arduino to control
both registers with just 3 pins (Data, Clock, Latch).
Buzzer: the buzzer is used to generate sound when a key is pressed. The Arduino outputs a PWM●

signal to the buzzer pin (Pin 10), which generates different frequencies based on the key pressed.
Power supply: the project runs on 5V provided by the Arduino, and the components have minimal●

power consumption. The shift registers, LEDs, and buzzer are powered by the 5V supply.
I2C LCD Display:●

The LCD uses the I2C protocol with two dedicated lines:

SDA (Serial Data Line) connected to Arduino analog pin A41.
SCL (Serial Clock Line) connected to Arduino analog pin A52.

2025/06/05 11:55 3/14 PianoBit

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

This communication interface allows sending commands and data over just two wires, greatly
reducing wiring complexity. The LCD module typically includes a PCF8574 I/O expander chip, which
converts the serial I2C data to parallel signals needed to drive the LCD. Pull-up resistors (usually
onboard) maintain stable HIGH levels on SDA and SCL lines. The I2C address used for the LCD in this
project is 0x27 (7-bit), shifted left by one bit in code to account for the read/write flag.

Optimizations:

In this project, I’ve utilized multiplexing for the button matrix to reduce the number of pins required
for detecting 16 buttons. By multiplexing, one row at a time is activated while scanning for button
presses in the corresponding columns. This allows the usage of only 8 I/O pins to control 16 buttons
instead of needing 16 individual pins.

For the LEDs, I used 74HC595 shift registers to control 16 LEDs with only 3 I/O pins (Data, Clock, and
Latch). The shift registers are connected in daisy-chain mode, meaning the output of the first shift
register is connected to the input of the second. This allows the Arduino to control a total of 16
outputs (8 from each shift register) while only using 3 pins, significantly reducing the number of I/O
pins required for controlling the LEDs.

Below there are some pictures that showcase the whole circuit:

Pin Usage

Button Matrix:

Rows: Pins 2, 3, 4, 5 (configured as output).●

These pins are used as outputs to drive the rows of the button matrix. Since the matrix requires1.
only one row to be active at a time, using output pins allows us to control which row is being
scanned.

Columns: Pins 6, 7, 8, 9 (configured as input with pull-up resistors).●

These pins are configured as inputs with internal pull-up resistors, as the columns in a button1.
matrix need to be read to detect key presses. The pull-up resistors ensure that the default state of
the columns is HIGH, making it easier to detect when a button is pressed (which will pull the
corresponding column LOW).

Shift Registers:

Pin 11: Data pin (DS) – connected to the first shift register.●

Pin 11 is used to send serial data (on or off) to the shift register. This allows the Arduino to1.
control multiple LEDs with just a few pins by sending 8-bit data at a time to the shift registers,
which then control the corresponding LEDs.

Pin 13: Clock pin (SH_CP) – connected to both shift registers.●

Pin 13 is used to send the clock signal, which synchronizes the data being transferred to the1.

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/lcd_version_piano.png?id=pm:prj2025:eradu:mara.fichios
http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/lcd_version_piano2.png?id=pm:prj2025:eradu:mara.fichios
http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/pianobit_circuit3.png?id=pm:prj2025:eradu:mara.fichios

Last update: 2025/05/24 14:12 pm:prj2025:eradu:mara.fichios http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/05 11:55

shift registers. Each pulse of the clock pin shifts the data one bit further into the shift register.

Pin 12: Latch pin (ST_CP) – connected to both shift registers.●

Pin 12 controls the latch pin of the shift register. When the latch pin is triggered, the shift1.
register outputs the data stored and updates the state of the LEDs. This pin is essential for
making sure that the LED states are properly updated when the data has been shifted in.

Pin 10: Buzzer – connected to the passive buzzer for generating sound.

Pin 10 is a PWM-capable pin used to generate the different frequencies required for the buzzer. By1.
varying the frequency with the `tone()` function, the Arduino can produce musical notes
corresponding to the key presses.

LEDs: The shift registers control the LEDs through the Q0-Q7 pins on each shift register. The first shift
register controls LEDs 0-7, and the second shift register controls LEDs 8-15.

By using the Q0-Q7 pins of each shift register, we can control up to 16 LEDs using only 3 pins on1.
the Arduino (Data, Clock, and Latch). This greatly reduces the number of I/O pins required for
controlling the LEDs, allowing us to build a more efficient and scalable system.

I2C LCD Display Pins:

Pin A4 (SDA - Serial Data Line) - Bidirectional data line for I2C communication. Transmits●

commands and data between Arduino and LCD module. Requires pull-up resistors to ensure stable
logic levels.

Pin A5 (SCL - Serial Clock Line) - Clock line generated by the master (Arduino) to synchronize●

data transfer on SDA. Also requires pull-up resistors.

Software Design

Development Environment:

Arduino IDE●

Libraries Used:

No external Arduino libraries were used in this project. All communication protocols and peripheral
controls were implemented manually by direct register manipulation and custom functions.

Explanation:

- The project uses low-level control of the I2C bus through direct manipulation of the AVR TWI (Two
Wire Interface) registers (`TWBR`, `TWCR`, `TWDR`, `TWSR`), instead of relying on the Arduino Wire
library. - LCD communication is implemented manually by sending commands and data over I2C using
bit-banged sequences with precise timing. - Shift registers and keypad scanning are handled using
direct port manipulation and interrupts without external libraries.

Global Constants and Defines for LCD:

- `define LCD_ADDR (0x27 « 1)`

2025/06/05 11:55 5/14 PianoBit

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Defines the 7-bit I2C address of the LCD module shifted left by one bit to
form the 8-bit address used by the TWI hardware.

- `define LCD_BACKLIGHT 0x08`

Controls the LCD backlight bit on the PCF8574 I/O expander. Setting this bit
turns the backlight on.

- `define ENABLE 0x04`

The Enable (EN) signal bit for the LCD controller, used to latch commands or
data.

- `define READ_WRITE 0x02`

Read/Write bit; set low for write operations (not used for reading in this
code).

- `define REGISTER_SELECT 0x01`

Selects whether data sent to the LCD is a command (`0`) or data (`1`).

Software Structure:

* Initialization Functions:

`setup()` initializes serial communication, I2C registers, LCD, pin modes for rows, columns, buzzer,1.
and shift registers.
Configures Timer1 for row multiplexing and enables pin change interrupts on keypad columns.2.

* Interrupt Service Routines (ISRs):

`ISR(TIMER1_COMPA_vect)`: Cycles active row in the keypad matrix by toggling row pins to enable1.
scanning one row at a time.
`ISR(PCINT2_vect)` and `ISR(PCINT0_vect)`: Detect any change on keypad columns and set a flag2.
(`keypadChanged`) to trigger keypad scanning.

* Keypad Scanning:

`scanKeypad()` scans the 4×4 matrix by activating rows sequentially and reading columns from1.
port registers.
Implements debounce logic by timing stable button presses before confirming input.2.
Updates buzzer tone, LEDs, and LCD message when a valid key press or release is detected.3.

* LCD Control:

Custom low-level I2C communication functions (`i2c_init()`, `i2c_start()`, `i2c_write()`, etc.) handle1.
communication with the LCD via the I2C bus.
`lcd_send()` splits data/commands into 4-bit nibbles, sending each half to the LCD with control2.
signals.
High-level LCD functions (`lcd_clear_custom()`, `lcd_setCursor_custom()`, `lcd_print_custom()`)3.

Last update: 2025/05/24 14:12 pm:prj2025:eradu:mara.fichios http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/05 11:55

control display content.

* LED Control:

`updateLED()` uses two chained 74HC595 shift registers controlled by `shiftOut()` to light LEDs1.
corresponding to pressed keys.
Interrupts are temporarily disabled during shifting to prevent timing issues.2.
`clearAllLEDs()` turns off all LEDs by shifting zeroes to both registers.3.

* Main Loop:

Continuously checks if a keypad change flag is set by ISRs to scan keypad immediately.1.
If no immediate change, performs periodic keypad scanning to catch any missed input.2.

* Sound Generation:

Uses Arduino `tone()` function to play frequencies mapped to pressed keys via the buzzer.1.
Stops tone when no button is pressed.2.

Functions:

Function Role / Description

`setup()` Initializes pins, timers, interrupts, LCD, and hardware peripherals.
Prepares the system for operation.

`loop()` Main loop that checks for keypad changes via interrupts or periodic
scanning, then processes key states.

`scanKeypad()` Scans the 4×4 button matrix to detect which button is pressed,
implements debounce logic, updates state.

`updateLED(int)` Controls two 74HC595 shift registers to turn on the LED
corresponding to the pressed key, clears others.

`clearAllLEDs()` Turns off all LEDs by sending zeros to the shift registers.

`lcd_init_custom()` Sends initialization commands to the LCD over I2C to configure 4-bit
mode, display on, cursor off, etc.

`lcd_command(uint8_t)` Sends a command byte to the LCD to control cursor, clear display, or
other instructions.

`lcd_data(uint8_t)` Sends a data byte (character) to the LCD to be displayed at the
current cursor position.

`lcd_send(uint8_t, uint8_t)` Sends one byte to the LCD split into two 4-bit nibbles with control
bits (command or data).

`lcd_write4bits(uint8_t)` Sends 4 bits to the LCD via I2C, including backlight and enable signal
sequencing for proper timing.

`lcd_clear_custom()` Clears the LCD display and delays for command execution.

`lcd_setCursor_custom(int, int)` Sets the cursor position on the LCD based on row and column
arguments.

`lcd_print_custom(const char*)` Prints a null-terminated string character by character on the LCD.

`i2c_init()` Initializes I2C hardware registers for communication at
approximately 100 kHz clock speed.

`i2c_start(uint8_t)` Generates an I2C start condition and sends the device address, waits
for acknowledgment.

`i2c_write(uint8_t)` Writes one byte of data on the I2C bus and waits for
acknowledgment from the slave device.

2025/06/05 11:55 7/14 PianoBit

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

`i2c_stop()` Sends an I2C stop condition to end communication.

`ISR(TIMER1_COMPA_vect)` Timer1 Compare Interrupt Service Routine that multiplexes rows of
the button matrix by cycling active row pins.

`ISR(PCINT2_vect)` Pin Change Interrupt Service Routine for Port D columns that signals
when keypad state has changed.

`ISR(PCINT0_vect)` Pin Change Interrupt Service Routine for Port B columns that signals
when keypad state has changed.

Program Flow:

* Setup Phase:

Initialize serial communication for debugging.●

Initialize I2C communication registers manually.●

Initialize the LCD display by sending low-level commands over I2C.●

Set initial LCD message to prompt user (“Apasa o nota:”).●

Configure timer to run in CTC mode, generating interrupts to multiplex button matrix rows.●

Enable pin change interrupts on column inputs to detect button presses immediately.●

Configure pins controlling the shift registers (for LEDs) and buzzer.●

Clear all LEDs and set initial states.●

* Interrupt Service Routines (ISRs):

Timer1 Compare Match ISR:●

Cycles through the rows of the button matrix by setting the previous row HIGH (inactive) and1.
the next row LOW (active).
This multiplexing allows scanning one row at a time.2.

Pin Change Interrupts (PCINT0 and PCINT2):●

Triggered on any change on the column input pins.1.
Sets a flag (`keypadChanged`) to indicate that a keypad scan should be performed.2.

* Main Loop (`loop`):

If the `keypadChanged` flag is set by the ISR:●

Perform a keypad scan to detect button presses/releases.1.
Clear the `keypadChanged` flag.2.
Record the time of this scan.3.

Otherwise, if a certain time (`scanInterval`) has passed since the last scan:●

Perform a periodic keypad scan to ensure no button press is missed.1.

* Keypad Scanning (`scanKeypad`):

For each row:●

The active row is LOW (due to Timer1 ISR multiplexing).1.
Read the column input pins directly from hardware registers.2.
Detect if any button in the active row is pressed by checking which column reads LOW.3.

Calculate the index of the pressed button based on the row and column.●

Implement debouncing by checking if the detected button remains stable for a debounce period●

(`buttonStableDelay`).
If a stable button press is detected:●

Update the LCD to display the pressed note.1.
Start playing the corresponding tone on the buzzer.2.

Last update: 2025/05/24 14:12 pm:prj2025:eradu:mara.fichios http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/05 11:55

Light up the corresponding LED by updating the shift registers.3.
Log the pressed button and frequency on the serial monitor.4.

If no button is pressed (release detected):●

Stop the buzzer.1.
Turn off all LEDs.2.
Reset the LCD message to the prompt.3.

* LED Update (`updateLED`):

Generate a 16-bit pattern with only the bit corresponding to the pressed button set.●

Temporarily disable interrupts to avoid glitches during data shifting.●

Shift out the pattern into two chained 74HC595 shift registers (high byte first, then low byte).●

Re-enable interrupts.●

* Debounce Mechanism:

Detects changes in button state.●

Resets a timer whenever a change is detected.●

Only confirms a button state change if stable for at least 50 milliseconds.●

Prevents false triggering caused by mechanical switch bounce.●

Results

All 16 keys are correctly detected using matrix scanning.●

The buzzer successfully plays a unique tone for each key.●

Corresponding LEDs light up with no visible flickering due to multiplexing.●

The LCD outputs the correct note that is played.●

The Arduino handles real-time input/output tasks with stable performance.●

2025/06/05 11:55 9/14 PianoBit

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/pb_1.jpg?id=pm:prj2025:eradu:mara.fichios
http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/pb_2.jpg?id=pm:prj2025:eradu:mara.fichios

Last update: 2025/05/24 14:12 pm:prj2025:eradu:mara.fichios http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/05 11:55

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/pb_3.jpg?id=pm:prj2025:eradu:mara.fichios

2025/06/05 11:55 11/14 PianoBit

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/pb_4.jpg?id=pm:prj2025:eradu:mara.fichios

Last update: 2025/05/24 14:12 pm:prj2025:eradu:mara.fichios http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/05 11:55

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/pb_5.jpg?id=pm:prj2025:eradu:mara.fichios

2025/06/05 11:55 13/14 PianoBit

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Conclusions

This project taught me a lot about working efficiently with limited Arduino pins using multiplexing and
shift registers. Implementing I2C manually for the LCD really helped me understand how
communication protocols work at a low level. I also learned why software debouncing is crucial for
reliable button inputs. Overall, building this from scratch boosted my skills in embedded systems and
gave me more confidence in handling hardware and software together without relying on external
libraries.

Logbook

Week 1: Chose project idea and defined functionality●

Week 2: Hardware design●

Week 3: Software design●

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/eradu/pb_6.jpg?id=pm:prj2025:eradu:mara.fichios

Last update: 2025/05/24 14:12 pm:prj2025:eradu:mara.fichios http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/05 11:55

Bibliography/ Resources

Project Repo:

https://github.com/marafichios/PianoBit/tree/main●

Websites used for buying the components:

https://www.optimusdigital.ro/ro/?gad_source=1&gad_campaignid=20864846564&gbraid=0AAAAA●

Dv-p3AcpG7M_HbgPQ0KQ4uBq-Ehv&gclid=CjwKCAjw24vBBhABEiwANFG7y3y28oexWP6opxU_ynoO9
b2NToMi9NKPKU70vFu9IwIw7i5ApsXHoxoCl2QQAvD_BwE
https://www.emag.ro/●

Bibliography:

https://docs.onion.io/omega2-maker-kit/starter-kit-using-shift-register.html●

https://docs.arduino.cc/tutorials/communication/guide-to-shift-out/●

Export to PDF

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link:
http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

Last update: 2025/05/24 14:12

https://github.com/marafichios/PianoBit/tree/main
https://www.optimusdigital.ro/ro/?gad_source=1&gad_campaignid=20864846564&gbraid=0AAAAADv-p3AcpG7M_HbgPQ0KQ4uBq-Ehv&gclid=CjwKCAjw24vBBhABEiwANFG7y3y28oexWP6opxU_ynoO9b2NToMi9NKPKU70vFu9IwIw7i5ApsXHoxoCl2QQAvD_BwE
https://www.optimusdigital.ro/ro/?gad_source=1&gad_campaignid=20864846564&gbraid=0AAAAADv-p3AcpG7M_HbgPQ0KQ4uBq-Ehv&gclid=CjwKCAjw24vBBhABEiwANFG7y3y28oexWP6opxU_ynoO9b2NToMi9NKPKU70vFu9IwIw7i5ApsXHoxoCl2QQAvD_BwE
https://www.optimusdigital.ro/ro/?gad_source=1&gad_campaignid=20864846564&gbraid=0AAAAADv-p3AcpG7M_HbgPQ0KQ4uBq-Ehv&gclid=CjwKCAjw24vBBhABEiwANFG7y3y28oexWP6opxU_ynoO9b2NToMi9NKPKU70vFu9IwIw7i5ApsXHoxoCl2QQAvD_BwE
https://www.emag.ro/
https://docs.onion.io/omega2-maker-kit/starter-kit-using-shift-register.html
https://docs.arduino.cc/tutorials/communication/guide-to-shift-out/
http://ocw.cs.pub.ro/?do=export_pdf
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/pm/prj2025/eradu/mara.fichios

	PianoBit
	General Description
	Hardware Design
	Pin Usage
	Software Design
	Results
	Conclusions
	Logbook
	Bibliography/ Resources

