
2025/06/17 23:20 1/7 Laser Sentry Guard

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Laser Sentry Guard

Nume si Prenume: Stoica Mihai-Bogdan
Grupa: 335CA

Introduction

This project features an Arduino Uno (ATmega328P)-based autonomous sentry system inspired by the
defensive turrets from Helldivers 2. The system is built around a finite state machine that handles
idle scanning, movement detection and target tracking.
A potentiometer allows real time adjustment of the system's aggression level. Additionally, a laser is
used to visually indicate the direction the sentry is currently facing.

For a better understanding of how such a sentry behaves, check out this link:
https://helldivers.fandom.com/wiki/Sentries

General Description

The sentry operates by continuously rotating to scan its surroundings while in an idle state. When
motion is detected, it transitions into an active tracking state, aligning itself with the target and
maintaining focus as long as movement persists. The behavior and response time of the system are
influenced by the aggression level, which can be manually adjusted using a potentiometer. This
control affects how quickly the sentry reacts and how long it remains alert after detecting movement.
A laser mounted on the sentry provides a visual cue, pointing precisely in the direction the system is
currently facing, simulating a targeting mechanism.

An initial block diagram of the system is shown below:

Aggression Control and Behavior

The aggression control allows the user to adjust the sentry's responsiveness to motion using a
potentiometer. Higher aggression levels make the sentry more sensitive and reactive, quickly
transitioning to tracking mode even with small movements, while lower settings result in slower, more
passive reactions. This control offers flexibility, allowing the sentry to adapt to different scenarios,
from cautious monitoring to high-alert defense.

https://helldivers.fandom.com/wiki/Sentries
http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/abirlica/sentry.png?id=pm:prj2025:abirlica:mihai_bogdan.stoica


Last update: 2025/05/29
20:06 pm:prj2025:abirlica:mihai_bogdan.stoica http://ocw.cs.pub.ro/courses/pm/prj2025/abirlica/mihai_bogdan.stoica

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/17 23:20

Servo Selection: MG996R 360°

For actuation, I chose the MG996R 360° servo because I am unsure of the weight it will need to
support. This servo is known for its high torque, providing flexibility for adjusting based on the weight
of the system and components added later. It will ensure smooth and precise movement when
tracking the detected motion.

Hardware Design

The following table lists the main components used in this project along with their corresponding
links(Digi-Key or Mouser):

Component Description Digi-Key Link
Arduino Uno Microcontroller board Link
HC-SR04 Sensor Ultrasonic distance Link
AM312 Sensor PIR motion detection Link
MG996r Servo 360° rotation servo Link
Potentiometer Aggression control Link
Laser Visual target TODO
Prototyping Board A perforated prototyping board Link
Battery Support Support for 4xAA batteries Link

I have designed the schematic for the system using Fusion 360. The schematic can be found below:

Sensor Placement and Configuration

This project utilizes two HC-SR04 ultrasonic distance sensors positioned at a 90-degree angle relative
to each other to minimize signal interference and eliminate blind spots in coverage. The sensors are
placed with a 6 cm gap between their centers, providing optimal spacing for accurate distance
measurement without overlap. Positioned centrally between the two ultrasonic sensors is the AM312
PIR motion sensor. This strategic layout ensures that the PIR sensor effectively detects motion in the
area covered by both HC-SR04 units, enabling reliable activation and tracking of nearby movement.

The entire sensor assembly is mounted on a servo motor, which allows it to rotate and scan the
environment. The servo motor and the microcontroller (MCU) are powered from separate power
sources to ensure stable operation and prevent voltage drops during movement.

The pins used for the assembly are:

- D2, D3 - sensor 1, HC-SR04

https://www.digikey.ro/en/products/detail/arduino/A000066/2784006
https://eu.mouser.com/ProductDetail/OSEPP-Electronics/HC-SR04?qs=wNBL%2BABd93PqZEhuhHkuOw==&srsltid=AfmBOopUbHFp_8tF06O02BSl-eJiXPPbmTBv_xMuLincJ54HBwc-atEt
https://www.optimusdigital.ro/en/pir-sensors/7336-pir-mini-sensor-module.html
https://www.digikey.ro/en/products/detail/terasic-inc/FXX-3037-TOP/7044113
https://www.digikey.ro/en/products/detail/same-sky-formerly-cui-devices/PT01-D125D-B503/15903915
http://ocw.cs.pub.ro/courses/pm/prj2025/abirlica/todo
https://www.digikey.com/en/products/detail/dfrobot/FIT0203/6588423
https://www.digikey.com/en/products/detail/mpd-memory-protection-devices/BA4AAW/2439227
http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/abirlica/pm_sch_sentry.png?id=pm:prj2025:abirlica:mihai_bogdan.stoica


2025/06/17 23:20 3/7 Laser Sentry Guard

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

- D6, D7 - sensor 2, HC-sr04
- D8 - sensor 3, PIR(am312)
- D9 - High Torque Servo Motor(360), MG996r

Why this configuration?

I decided to go with this setup for the following reasons: Pins D5 and D4 are related to UART
functionality and tend to interfere with the proper operation of the sensors, likely due to timing or
signal conflicts during serial communication. D9 is well-suited for controlling the servo motor because
it's a PWM-capable pin, which ensures smooth and accurate rotation. D8 is a good choice for the PIR
sensor because it supports PCINT0 (Pin Change Interrupt), allowing motion detection without relying
on the limited external interrupt pins (D2 and D3), which are already in use. This configuration
balances the hardware limitations of the Arduino Uno while maintaining responsiveness and reliability
across all components.

To simplify wiring and ensure a stable power supply, I will solder the GND and 5V lines of all sensors
together into common rails. This will reduce cable clutter and improve reliability.



Last update: 2025/05/29
20:06 pm:prj2025:abirlica:mihai_bogdan.stoica http://ocw.cs.pub.ro/courses/pm/prj2025/abirlica/mihai_bogdan.stoica

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/17 23:20

Software Design

The firmware is written in C, using direct AVR register manipulation for all peripherals such as timers,
ADC, EEPROM, and interrupts. The project is developed using the Arduino IDE, relying on
few(digitalWrite) Arduino functions. This environment is used solely for its ease of compilation and
flashing, while the core logic is entirely low-level and bare-metal. The target microcontroller is the
ATmega328P, programmed via a USB-to-serial interface using the standard Arduino bootloader.

Key functionality includes:

Motion detection using interrupts via the PIR sensor (Pin Change Interrupt on PCINT0)●

Distance measurement with two ultrasonic sensors triggered via GPIO and read through timer logic●

(Timer0)
A potentiometer connected to an analog pin for aggression level adjustment, read using the ADC●

Servo movement handled using PWM generated by a 16-bit timer for precise control of rotation and●

http://ocw.cs.pub.ro/courses/_detail/pm/prj2025/abirlica/sentry_curr_hard.jpeg?id=pm:prj2025:abirlica:mihai_bogdan.stoica


2025/06/17 23:20 5/7 Laser Sentry Guard

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

alignment
Serial debug output through USART, showing distance and aggression level values●

A watchdog timer configured in interrupt mode to periodically reset the system's motion flag,●

simulating a return to idle state if no movement persists

Code structure:

All sensor initialization and control functions are encapsulated for readability●

Debugging via USART is included with optional output toggled by the `DEBUG` macro●

The `movement` struct stores motion and sensor states, aggression value, and system flags●

The main loop continuously checks for motion, reads distances and aggression level, and responds●

accordingly

The design ensures modularity, debuggability, and responsiveness, tailored to the project's behavioral
logic.

Design Decisions

The HC-SR04 ultrasonic sensors are read using polling instead of interrupts. Since their echo durations
are very short, polling ensures fast and accurate readings without the risk of stack corruption or
interrupt conflicts, which could occur due to overlapping or nested ISR executions.

On the other hand, interrupts were used for the PIR sensor (via PCINT0) and the watchdog timer
(WWDT). The PIR interrupt enables real-time motion detection without constantly checking the pin in
the main loop, while the WWDT interrupt helps manage system state by resetting the motion flag
after a predefined timeout, ensuring the sentry returns to idle mode if no motion persists.

Operating Modes: Radar and Sentry

The system supports two distinct operating modes: Radar Mode and Sentry Mode. The currently
active mode is stored in the internal EEPROM of the ATmega328P and is read at startup to configure
behavior.

Radar Mode ('R')●

The servo continuously sweeps between its angle limits (e.g., 0° to 180°), mimicking a scanning
motion similar to radar. This mode ignores sensor input and focuses on regular motion patterns.

Sentry Mode ('S')●

The system remains idle until motion is detected using the PIR sensor. Once triggered, the servo turns
toward the direction with the closest detected object (using data from the ultrasonic sensors).

Pause Mode ('P')●

The system remains idle and does not move the servo. It continuously reads the distance sensors to
identify the closest object but does not perform any servo movement or motion-triggered actions.



Last update: 2025/05/29
20:06 pm:prj2025:abirlica:mihai_bogdan.stoica http://ocw.cs.pub.ro/courses/pm/prj2025/abirlica/mihai_bogdan.stoica

http://ocw.cs.pub.ro/courses/ Printed on 2025/06/17 23:20

The modes are stored in EEPROM, enabling persistent configuration even after a power cycle. EEPROM
access is performed via direct register manipulation (`EEAR`, `EEDR`, `EECR`) to minimize overhead
and increase speed.

This dual-mode architecture allows the system to behave either:

Proactively, scanning its surroundings (Radar)●

Reactively, responding only when motion is detected (Sentry)●

Source Code and Demo

The complete project is available on GitHub:

Main Repository: https://github.com/bogdanstoicasn/laser-sentry-guard●

The firmware is written in C and developed using the Arduino IDE, but it relies on direct register
manipulation for full control over peripherals.

The main project logic is located in the `ardu.ino` file.●

A simplified sensor demo project is also included, showing how to read from:

The ultrasonic sensors (HC-SR04)●

The PIR motion sensor●

The potentiometer via ADC●

It is located in `main.c` and uses a custom driver lib made by me(avratlib), located at:

https://github.com/bogdanstoicasn/mcus-driver-lib●

The demo video is available in the main repository as well:

Demo Video: https://github.com/bogdanstoicasn/laser-sentry-guard●

Resources

`avratlib` custom driver library●

https://github.com/bogdanstoicasn/mcus-driver-lib

Project inspiration – Sentry Turret (Helldivers)●

https://helldivers.fandom.com/wiki/Sentries

ATmega328P Reference Manual●

ATmega328P Datasheet

https://github.com/bogdanstoicasn/laser-sentry-guard
https://github.com/bogdanstoicasn/mcus-driver-lib
https://github.com/bogdanstoicasn/laser-sentry-guard
https://github.com/bogdanstoicasn/mcus-driver-lib
https://helldivers.fandom.com/wiki/Sentries
https://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-Microcontrollers-ATmega328P_Datasheet.pdf


2025/06/17 23:20 7/7 Laser Sentry Guard

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Export to PDF

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link:
http://ocw.cs.pub.ro/courses/pm/prj2025/abirlica/mihai_bogdan.stoica

Last update: 2025/05/29 20:06

http://ocw.cs.pub.ro/?do=export_pdf
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/pm/prj2025/abirlica/mihai_bogdan.stoica

	Laser Sentry Guard
	Introduction
	General Description
	Aggression Control and Behavior
	Servo Selection: MG996R 360°
	Hardware Design
	Sensor Placement and Configuration
	Why this configuration?
	Software Design
	Design Decisions
	Operating Modes: Radar and Sentry

	Source Code and Demo
	Resources


