2025/11/18 05:56 1/3 Bike Infotainment System

Bike Infotainment System

README

Bike Infotainment System

Introducere

Autor: Robert Grancsa 332CA

Un infotainment pentru biciclete, vrea sa afiseze pe un display informatii folositoare despre statusul
curent al cursei tale precum:

- Viteza curenta

- Temperatura de afara

- Viteza medie din cursa curenta

- Locatia curenta

- Status despre ce obiecte sunt pe traseu, folosind un model de image recognition, care poate
identifica semne de circulatie.

. Inclinatia si acceleratia curenta

Pe langa asta, dispozitivul este conectat la internet, si comunica mereu cu un server pe un Raspberry
Pi, unde stocheaza informatiile, care mai apoi sunt salvate intr-o baza de date si afisate intr-un
dashboard folositor, care iti arata detalii despre ultimele tale curse, cu un istoric cu unde ai fost si ce
locuri ai vizitat.

Acest dispozitiv de infotainment pentru biciclete aduce o serie de beneficii semnificative pentru ciclisti,
oferindu-le uneltele necesare pentru a monitoriza si imbunatati experienta lor de ciclism.

Descriere generala

Schema proiectului este compusa dintr-un microcontroller ESP32, care conecteaza partea fizica a
proiectului. Conectat la el, putem gasi:

1. GPS - ne va intoarce date despre locatia curenta printr-un stream pe UART, aceste date fiind
stocate si trimise mai departe la server o data la cateva secunde.

2. Accelerometru - ne poate afisa starea curenta a bicicletei, daca se apleaca stanga sau dreapta, sau
cat de repede accelereaza sau franeaza.

3. Hall Effect senzor - folosit pentru a calcula numarul de revolutii pe secunda al bicicletei, pentru a
afisa o estimare corecta a vitezei.

4. Camera - va transmite cadre o data pe secunda catre server, care mai apoi va intoarce date despre
cadrul curent, mai apoi fiind afisat pe display.

5. Display - aici vor fi afisate toate datele importante, care nu sunt transmise catre server dar care
ajuta la a vedea mai usor starea curenta.

6. Serverul Raspberry Pi - face conexiunea cu toate instrumentele de la bord, care le stocheaza pe o

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Last update: 2024/05/26 22:16 pm:prj2024:mdinica:robert.grancsa http://ocw.cs.pub.ro/courses/pm/prj2024/mdinica/robert.grancsa

baza de date locala, si dupa le putem interoga pe un front-end cu un dashboard, care ne arata
statistici despre ultimele curse.

B
Hardware Design

Schematicul produsul se poate vedea mai jos. Am incercat sa conectez pinii spefici SPI pe pinii
specifici de SPI, pentru GPS m-am folosit de pinii de UART si pentru camera am ales sa folosesc pinii
cei mai apropiati unul de altul pentru date, ca sa nu fie overlap la conectarea firelor.

(]

Tabelul cu piesele folosite se poate vedea mai jos.

| Nume Piesa || Model ||Protoco|
Microcontroller ESP32-WROOM32 -

Display ST7735 SPI
Camera 0Vv7670 12S

GPS GY-GPS6MV?2 UART
Hall Effect Sensor YS-27 ADC

Software Design

Codul este momentan functional pe partea de cod main, functionalitatile extra nu au putut fi duse
pana la capat din cauza limitarilor hardware (ram insuficient pentru a encoda poze in base64), dar
cele de baza cum ar fi tracking de viteza functioneaza corect.

Biblioteci
Au fost folosite biblioteci precum:

- Adafruit GFX - pentru display si grafice

- OV7670 - pentru camera si sincronizare de ceas pe 12C/12S

- TinyGPS++ - pentru a citi datele pe UART pe GPS

- WiFi, WiFiMulti, WiFiClient, HTTPClient - pentru transfer de date via internet

Features

Au fost folosite doua thread-uri separate, unul care se ocupata de citirea datelor, actualizarea lor si
afisarea pe ecran de fiecare data cand se gaseste o actualizare a vitezea via Hall Effect sensor, iar al
doilea thread, care e pinned la un alt core fata de primul, se ocupa de transmisia prin wifi a datelor
catre back-end-ul care tine un loc al datelor.

Am folosit si intreruperi pentru a detecta butonul apasat, ca mai apoi sa pot cicla intre ecranul
principal de viteza, si ecranul care arata display-ul.

Serverul este scris in Express, si se foloseste de MongoDB sa salveze datele persistent.

El este hostat pe raspberry pi, si pastreaza mereu legatura la device. Acest back-end face si
request-uri catre Google Cloud sa clasifice obiectele din imagine de pe camera,

care mai apoi intoarce daca a gasit vreun semn de circulatie sau vreun danger pe imagine, si in caz

http://ocw.cs.pub.ro/courses/ Printed on 2025/11/18 05:56

2025/11/18 05:56 3/3 Bike Infotainment System

ca se gaseste ceva dangerous imaginea respectiva este si ea salvata in baza de date ca logging.
Aceste date pot fi vazute dupa vazute dupa aceea pe front-end-ul scris in React.

Schelet

Codul contine partea de init, care initializeaza wifi-ul, si fiecare senzor valabil precum gps-ul, camera
si ecranul. Apoi avem partea de cod care introduce intreruperile si pornirea de core-uri pentru task-ul

de send, si cel de update a ecranului.

Se foloseste de multe functii ajutatoare, pentru a trimite datele, pentru a da refresh la ecran si pentru
a calcula distanta parcursa de la ultima activare.

Calibrare

Pentru senzorul Hall, calibrarea a fost facuta folosind print-uri la serial si folosind un magnet si regland
potentiometrul de pe device pentru a ajunge la sensitivitatea dorita.

Rezultate Obtinute

Codul sursa pentru proiect poate fi gasit aici

Download

Proiectul poate fi gasit pe github, si descarcat si compilat local.

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

https://github.com/RobertGrancsa/PM_Project
https://github.com/RobertGrancsa/PM_Project

	Bike Infotainment System

