2025/10/06 13:43

1/9 Music Player

Music Player

Introducere

- Proiectul consta intr-un player de muzica care reda melodii dupa un card SD.

- Acesta va beneficia de un ecran LCD pe care va fi proiectat numele melodiei care se reda si de
led-uri RGB care isi vor schimba culoarea in functie de sunetul redat prin difuzor.

- De asemenea, melodiile vor putea fi schimbate inainte si inapoi cu ajutorul a doua butoane, iar
sunetul va fi redat printr-un difuzor care care va fi conectat la un amplificator pentru incrementarea
sunetului.

- Am ales sa fac acest proiect din dorinta de a crea ceva practic si de care sa ma pot folosi in viitor.

Descriere generala

Hardware Design

Lista de piese:

Nk WN

Arduino UNO

Led RGB
Rezistente 1k
Condesator

Fire tata-tata

Fire mama-tata
Modul de card SD
Card SD

Difuzor

. Amplificator

. Butoane

. Ecran LCD

. Breadboard

. Difuzor SparkFun

CS Open CourseWare - http://ocw.cs.pub.ro/courses/



Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

Schema cablaj

Software Design

Bibliotecile folosite sunt:

1. SD.h
2. LiquidCrystal 12C.h
3. SPLh

Cod

#include <LiquidCrystal I2C.h>
#include "SD.h"
#include "SPI.h"
#define Rpinl 10
#define Gpinl 9
#define Bpinl 8
#define Rpin2 14
#define Gpin2 15
#define Bpin2 16
#define Rpin3 17
#define Gpin3 18
#define Bpin3 19

uint8 t signal values[] = {250, 240, 230, 220, 210, 200, 190, 180, 170, 160,
150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10};

// Set the LCD address to 0x27 for a 16 chars and 2 line display
LiquidCrystal I2C lcd(0x27, 16, 2);

File myFile;

// change this to make the song slower or faster

uintlée t tempo 110;

uint8 t buzzer 7;

short int melody[120];

uint8 t len = 0;

uint8 t notes;

volatile uint8 t song = 0, prev_song = 0;

unsigned long lastDebounceTimel = 0, lastDebounceTime2 = 0, debounceDelay =
500;

void RGBColor(uint8_t red, uint8_t green, uint8_t blue)

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43



2025/10/06 13:43

3/9

Music Player

analogWrite(Rpinl,
analogWrite(Gpinl,
analogWrite(Bpinl,

analogWrite(Rpin2,
analogWrite(Gpin2,
analogWrite(Bpin2,

analogWrite(Rpin3,
analogWrite(Gpin3,
analogWrite(Bpin3,

void lights(uint8_t signal)

red);
green);
blue);

red);
green);
blue);

red) ;
green);
blue);

if (signal >= signal values[0]) {

// blue

RGBColor (0, 0, 255);
} else if (signal >= signal values[1l]) {

// Azure
RGBColor (0, 255,

255);

} else if (signal >= signal values[2]) {

// Cyan
RGBColor (0, 127,

255);

} else if (signal >= signal values[3]) {

// Aqua marine
RGBColor (0, 255,

127);

} else if (signal >= signal values[4]) {

// Green
RGBColor (0, 255,

0);

} else if (signal >= signal values[5]) {

// Yellow

RGBColor(255, 255, 0);
} else if (signal >= signal values[6]) {

// Magenta
RGBColor (255, 0O,

255) ;

} else if (signal >= signal values[7]) {

// Rose
RGBColor (255, 0,

127);

} else if (signal >= signal values[8]) {

// Orange

RGBColor(255, 127, 0);
} else if (signal >= signal values[9]) {

// Red
RGBColor (255, 0O,

0);

} else if (signal >= signal values[9]) {

// Purple
RGBColor(128, 0,

128);

} else if (signal >= signal values[10]) {

// Gold

RGBColor (255, 215, 0);

CS Open CourseWare - http://ocw.cs.pub.ro/courses/



Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

} else if (signal >= signal values[11l]) {
// Spring green
RGBColor (0, 250, 154);

} else if (signal >= signal values[12]) {
// Turquoise
RGBColor (64, 224, 208);

} else if (signal >= signal values[13]) {
// Indigo
RGBColor(75, 0, 130);

} else if (signal >= signal values[14]) {
// Pink
RGBColor (255, 192, 203);

} else if (signal >= signal values[15]) {
// Lavender
RGBColor (230, 230, 250);

} else if (signal >= signal values[16]) {
// Chocolate
RGBColor(210, 105, 30);

} else if (signal >= signal values[17]) {
// Sea green
RGBColor (46, 139, 87);

} else if (signal >= signal values[18]) {
// Olive
RGBColor(128, 128, 0);

} else if (signal >= signal values[19]) {
// Maroon
RGBColor (128, 0, 0);

} else if (signal >= signal values[20]) {
// Midnight blue
RGBColor(25, 25, 112);

} else if (signal >= signal values[21]) {
// Medium violet red
RGBColor (199, 21, 133);

} else if (signal >= signal values[22]) {
// Orchid
RGBColor (218, 112, 214);

} else if (signal >= signal values[23]) {
// Steel blue
RGBColor (70, 130, 180);

} else if (signal >= signal values[24]) {

// Coral

RGBColor (255, 127, 80);
} else {

// White

RGBColor(255,255,255);

}

void button1Pressed()

unsigned long current = millis();
if(millis() - lastDebounceTimel > debounceDelay){

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43



2025/10/06 13:43 5/9 Music Player

lastDebounceTimel = current;
Serial.println(song);
song++;

song = song % 2;

}

void button2Pressed()

unsigned long current = millis();
if(current - lastDebounceTime2 > debounceDelay){
lastDebounceTime2 = current;
if(song !'= 5){
prev_song = song;

song = 5;
} else if (song == 5){
song = prev_song;
}
}

void readFile(char *file_name)

Serial.print("Init SD card...");
if (!SD.begin(4)) {
Serial.println("init failed!");
while (1);
}
Serial.println("init done.");
// open the file for reading:
myFile = SD.open(file name);
if (myFile) {
Serial.println(file name);
uint8 t i = 0;
// read from the file until there's nothing else in it:
while (myFile.available()) {
short int note = myFile.parselnt();
melody[i] = note;
if (i > 120)
break;
i++;
}
len = i;
notes = len / 2;
// close the file:
myFile.close();
} else {
// if the file didn't open, print an error:
Serial.println("error opening file");

}

void sing(uint8_t song_id)

CS Open CourseWare - http://ocw.cs.pub.ro/courses/



Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

// this calculates the duration of a whole note in ms
int wholenote = (60000 * 4) / tempo;
int divider = 0, noteDuration = 0;
// iterate over the notes of the melody.
// the array is twice the number of notes (notes + durations)
for (uint8 t thisNote = 0; thisNote < notes * 2; thisNote = thisNote + 2) {
if (song _id != song) {
return;
}
lights(abs(melody[thisNote]) % 255);
// calculates the duration of each note
divider = melody[thisNote + 1];
if (divider > 0) {
// regular note, just proceed
noteDuration = (wholenote) / divider;
} else if (divider < 0) {
// dotted notes are represented with negative durations!!
noteDuration = (wholenote) / abs(divider);
noteDuration *= 1.5; // increases the duration in half for dotted notes
}
// we only play the note for 90% of the duration, leaving 10% as a pause
tone(buzzer, melody[thisNote], noteDuration * 0.9);

// Wait for the specief duration before playing the next note
delay(noteDuration);

// stop the waveform generation before the next note
noTone(buzzer);

}
void play(char *song_name, uint8_t song_id)

readFile(song_name);
sing(song_id);

void setup()

// Start with the LEDs off.
pinMode (10, OUTPUT);

pinMode (9, OUTPUT);

pinMode (8, OUTPUT);

pinMode (14, OUTPUT);
pinMode (15, OUTPUT);
pinMode (16, OUTPUT);
pinMode (17, OUTPUT);
pinMode (18, OUTPUT);
pinMode (19, OUTPUT);

pinMode(2, INPUT PULLUP);
attachInterrupt(digitalPinToInterrupt(2), buttonlPressed, FALLING);

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43



2025/10/06 13:43 7/9

Music Player

pinMode (3, INPUT PULLUP);

attachInterrupt(digitalPinToInterrupt(3), button2Pressed,

// Open serial communications and wait for port to open
Serial.begin(9600);
while (!Serial) {
// wait for serial port to connect
}
// initialize the LCD
lcd.begin();
// Turn on the blacklight and print a message.
lcd.backlight();

void loop()

lcd.clear();
switch(song) {
case 0:
lcd.clear();
lcd.print("Game of thrones");
play((char*)"got.txt", 0);
break;
case 1:
lcd.clear();
lcd.print("Fur Elise-");
lcd.setCursor(3,1);
lcd.print("Beethoven");
play((char*)"furelise.txt", 1);
break;
default:
break;

Rezultate Obtinute

Link catre demo: https://www.youtube.com/shorts/H1VGBhJymu8

FALLING);

CS Open CourseWare - http://ocw.cs.pub.ro/courses/


http://ocw.cs.pub.ro/courses/_detail/pm/prj2023/abirlica/poza.jpg?id=pm:prj2023:abirlica:music_player
https://www.youtube.com/shorts/H1VGBhJymu8

Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

Concluzii

Am dorit initial sa implementez un media player care sa redea fisiere audio .wav de pe un card SD si
sa adauge un efect luminos pentru a sincroniza culorile cu notele muzicale, insa din motive
necunoscute, am intampinat dificultati in redarea fisierelor .wav de pe cardul SD utilizand biblioteca
TMRpcm.

Ca solutie alternativa, am decis sa stochez mai multe fisiere .txt pe card, fiecare continand notele
corespunzatoare unei melodii. Am citit notele din fisierul selectat intr-un vector si le-am redat folosind
functia “note” din Arduino IDE.

Am implementat un buton pentru schimbarea melodiilor si un alt buton pentru a pune pauza redarii
unei melodii. in timpul redarii, cele 3 LED-uri isi schimba culorile in functie de nota redata in prezent
de difuzor.

Am incercat sa imbunatatesc procesul de eliminare a rezonantelor provocate de contactele
imperfecte ale butonului prin addugarea unui condensator in serie cu fiecare buton. Cu toate acestea,
butoanele tot nu functionau corespunzator, asadar, am adaugat o metoda de debouncing pentru a
detecta o singura apasare de buton.

Am fost nevoit sa folosesc o lista restransa de melodii, deoarece adaugarea ecranului LCD, si implicit
a bibliotecii “LiquidCrystal_I2C", supraincarca memoria placii Arduino si componentele nu mai
functionau corect.

Dupa ce erau citite doua melodii de pe cardul SD, memoria se incarca si programul se bloca la citirea
urmatoarei melodii.

Din punct de vedere hardware, versiunea finala a proiectului a suferit cateva modificari. Am
economisit pini prin adaugarea a inca 2 LED-uri RGB si am optat pentru un LCD cu interfata 12C in

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43



2025/10/06 13:43 9/9 Music Player

locul celui standard. De asemenea, am adaugat un amplificator LM386 pentru a amplifica sunetul unui
difuzor SparkFun de 0.5W.

Dezvolatarea acestui proiect nu a fost una usoara. Pe parcusului acesteia am intampinat probleme in
ceea ce priveste constructia hardware-ului cat si dezvoltarea corecta a software-ului, insa rezultatul
final, desi este unul mai simplu decat mi-am propus initial, este unul complet functional.

Download

PDF Proiect

Jurnal

3 mai - documentatie initiala
14 mai - hardware
25 mai - software

Bibliografie/Resurse

Diagrama bloc - https://app.diagrams.net

Schema cablaj - https://fritzing.org

LCD 12C - https://github.com/fdebrabander/Arduino-LiquidCrystal-12C-library
SD library - https://github.com/arduino-libraries/SD

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link: [x]
http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

Last update: 2023/05/25 21:12

CS Open CourseWare - http://ocw.cs.pub.ro/courses/


http://ocw.cs.pub.ro/?do=export_pdf
https://app.diagrams.net
https://fritzing.org
https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library
https://github.com/arduino-libraries/SD
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

	Music Player
	Introducere
	Descriere generală
	Hardware Design
	Schema cablaj
	Software Design
	Rezultate Obţinute
	Concluzii
	Download
	Jurnal
	Bibliografie/Resurse


