
2025/10/06 13:43 1/9 Music Player

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

Music Player

Introducere

Proiectul consta intr-un player de muzica care reda melodii dupa un card SD.●

Acesta va beneficia de un ecran LCD pe care va fi proiectat numele melodiei care se reda si de●

led-uri RGB care isi vor schimba culoarea in functie de sunetul redat prin difuzor.
De asemenea, melodiile vor putea fi schimbate inainte si inapoi cu ajutorul a doua butoane, iar●

sunetul va fi redat printr-un difuzor care care va fi conectat la un amplificator pentru incrementarea
sunetului.
Am ales sa fac acest proiect din dorinta de a crea ceva practic si de care sa ma pot folosi in viitor.●

Descriere generală

Hardware Design

Lista de piese:

Arduino UNO1.
Led RGB2.
Rezistente 1k3.
Condesator4.
Fire tata-tata5.
Fire mama-tata6.
Modul de card SD7.
Card SD8.
Difuzor9.
Amplificator10.
Butoane11.
Ecran LCD12.
Breadboard13.
Difuzor SparkFun14.

Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43

Schema cablaj

Software Design

Bibliotecile folosite sunt:

SD.h1.
LiquidCrystal_I2C.h2.
SPI.h3.

Cod

#include <LiquidCrystal_I2C.h>
#include "SD.h"
#include "SPI.h"
#define Rpin1 10
#define Gpin1 9
#define Bpin1 8
#define Rpin2 14
#define Gpin2 15
#define Bpin2 16
#define Rpin3 17
#define Gpin3 18
#define Bpin3 19

uint8_t signal_values[] = {250, 240, 230, 220, 210, 200, 190, 180, 170, 160,
150, 140, 130, 120, 110, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10};
// Set the LCD address to 0x27 for a 16 chars and 2 line display
LiquidCrystal_I2C lcd(0x27, 16, 2);
File myFile;
// change this to make the song slower or faster
uint16_t tempo = 110;
uint8_t buzzer = 7;
short int melody[120];
uint8_t len = 0;
uint8_t notes;
volatile uint8_t song = 0, prev_song = 0;
unsigned long lastDebounceTime1 = 0, lastDebounceTime2 = 0, debounceDelay =
500;

void RGBColor(uint8_t red, uint8_t green, uint8_t blue)

2025/10/06 13:43 3/9 Music Player

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

analogWrite(Rpin1, red);
analogWrite(Gpin1, green);
analogWrite(Bpin1, blue);

analogWrite(Rpin2, red);
analogWrite(Gpin2, green);
analogWrite(Bpin2, blue);

analogWrite(Rpin3, red);
analogWrite(Gpin3, green);
analogWrite(Bpin3, blue);

void lights(uint8_t signal)

if (signal >= signal_values[0]) {
 // blue
 RGBColor(0, 0, 255);
} else if (signal >= signal_values[1]) {
 // Azure
 RGBColor(0, 255, 255);
} else if (signal >= signal_values[2]) {
 // Cyan
 RGBColor(0, 127, 255);
} else if (signal >= signal_values[3]) {
 // Aqua marine
 RGBColor(0, 255, 127);
} else if (signal >= signal_values[4]) {
 // Green
 RGBColor(0, 255, 0);
} else if (signal >= signal_values[5]) {
 // Yellow
 RGBColor(255, 255, 0);
} else if (signal >= signal_values[6]) {
 // Magenta
 RGBColor(255, 0, 255);
} else if (signal >= signal_values[7]) {
 // Rose
 RGBColor(255, 0, 127);
} else if (signal >= signal_values[8]) {
 // Orange
 RGBColor(255, 127, 0);
} else if (signal >= signal_values[9]) {
 // Red
 RGBColor(255, 0, 0);
} else if (signal >= signal_values[9]) {
 // Purple
 RGBColor(128, 0, 128);
} else if (signal >= signal_values[10]) {
 // Gold
 RGBColor(255, 215, 0);

Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43

} else if (signal >= signal_values[11]) {
 // Spring green
 RGBColor(0, 250, 154);
} else if (signal >= signal_values[12]) {
 // Turquoise
 RGBColor(64, 224, 208);
} else if (signal >= signal_values[13]) {
 // Indigo
 RGBColor(75, 0, 130);
} else if (signal >= signal_values[14]) {
 // Pink
 RGBColor(255, 192, 203);
} else if (signal >= signal_values[15]) {
 // Lavender
 RGBColor(230, 230, 250);
} else if (signal >= signal_values[16]) {
 // Chocolate
 RGBColor(210, 105, 30);
} else if (signal >= signal_values[17]) {
 // Sea green
 RGBColor(46, 139, 87);
} else if (signal >= signal_values[18]) {
 // Olive
 RGBColor(128, 128, 0);
} else if (signal >= signal_values[19]) {
 // Maroon
 RGBColor(128, 0, 0);
} else if (signal >= signal_values[20]) {
 // Midnight blue
 RGBColor(25, 25, 112);
} else if (signal >= signal_values[21]) {
 // Medium violet red
 RGBColor(199, 21, 133);
} else if (signal >= signal_values[22]) {
 // Orchid
 RGBColor(218, 112, 214);
} else if (signal >= signal_values[23]) {
 // Steel blue
 RGBColor(70, 130, 180);
} else if (signal >= signal_values[24]) {
 // Coral
 RGBColor(255, 127, 80);
} else {
 // White
 RGBColor(255,255,255);
}

void button1Pressed()

 unsigned long current = millis();
 if(millis() - lastDebounceTime1 > debounceDelay){

2025/10/06 13:43 5/9 Music Player

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

 lastDebounceTime1 = current;
 Serial.println(song);
 song++;
 song = song % 2;
 }

void button2Pressed()

 unsigned long current = millis();
 if(current - lastDebounceTime2 > debounceDelay){
 lastDebounceTime2 = current;
 if(song != 5){
 prev_song = song;
 song = 5;
 } else if (song == 5){
 song = prev_song;
 }
 }

void readFile(char *file_name)

Serial.print("Init SD card...");
if (!SD.begin(4)) {
 Serial.println("init failed!");
 while (1);
}
Serial.println("init done.");
// open the file for reading:
myFile = SD.open(file_name);
if (myFile) {
 Serial.println(file_name);
 uint8_t i = 0;
 // read from the file until there's nothing else in it:
 while (myFile.available()) {
 short int note = myFile.parseInt();
 melody[i] = note;
 if (i > 120)
 break;
 i++;
 }
 len = i;
 notes = len / 2;
 // close the file:
 myFile.close();
} else {
 // if the file didn't open, print an error:
 Serial.println("error opening file");
}

void sing(uint8_t song_id)

Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43

// this calculates the duration of a whole note in ms
int wholenote = (60000 * 4) / tempo;
int divider = 0, noteDuration = 0;
// iterate over the notes of the melody.
// the array is twice the number of notes (notes + durations)
for (uint8_t thisNote = 0; thisNote < notes * 2; thisNote = thisNote + 2) {
 if (song_id != song) {
 return;
 }
 lights(abs(melody[thisNote]) % 255);
 // calculates the duration of each note
 divider = melody[thisNote + 1];
 if (divider > 0) {
 // regular note, just proceed
 noteDuration = (wholenote) / divider;
 } else if (divider < 0) {
 // dotted notes are represented with negative durations!!
 noteDuration = (wholenote) / abs(divider);
 noteDuration *= 1.5; // increases the duration in half for dotted notes
 }
 // we only play the note for 90% of the duration, leaving 10% as a pause
 tone(buzzer, melody[thisNote], noteDuration * 0.9);

 // Wait for the specief duration before playing the next note
 delay(noteDuration);
 // stop the waveform generation before the next note
 noTone(buzzer);
}

void play(char *song_name, uint8_t song_id)

readFile(song_name);
sing(song_id);

void setup()

// Start with the LEDs off.
pinMode(10, OUTPUT);
pinMode(9, OUTPUT);
pinMode(8, OUTPUT);
pinMode(14, OUTPUT);
pinMode(15, OUTPUT);
pinMode(16, OUTPUT);
pinMode(17, OUTPUT);
pinMode(18, OUTPUT);
pinMode(19, OUTPUT);

pinMode(2, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(2), button1Pressed, FALLING);

2025/10/06 13:43 7/9 Music Player

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

pinMode(3, INPUT_PULLUP);
attachInterrupt(digitalPinToInterrupt(3), button2Pressed, FALLING);
// Open serial communications and wait for port to open
Serial.begin(9600);
while (!Serial) {
 // wait for serial port to connect
}
// initialize the LCD
lcd.begin();
// Turn on the blacklight and print a message.
lcd.backlight();

void loop()

lcd.clear();
switch(song) {
 case 0:
 lcd.clear();
 lcd.print("Game of thrones");
 play((char*)"got.txt", 0);
 break;
 case 1:
 lcd.clear();
 lcd.print("Fur Elise-");
 lcd.setCursor(3,1);
 lcd.print("Beethoven");
 play((char*)"furelise.txt", 1);
 break;
 default:
 break;
}

Rezultate Obţinute

Link catre demo: https://www.youtube.com/shorts/H1VGBhJymu8

http://ocw.cs.pub.ro/courses/_detail/pm/prj2023/abirlica/poza.jpg?id=pm:prj2023:abirlica:music_player
https://www.youtube.com/shorts/H1VGBhJymu8

Last update: 2023/05/25 21:12 pm:prj2023:abirlica:music_player http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

http://ocw.cs.pub.ro/courses/ Printed on 2025/10/06 13:43

Concluzii

Am dorit inițial să implementez un media player care să redea fișiere audio .wav de pe un card SD și
să adauge un efect luminos pentru a sincroniza culorile cu notele muzicale, insa din motive
necunoscute, am întâmpinat dificultăți în redarea fișierelor .wav de pe cardul SD utilizând biblioteca
TMRpcm.

Ca soluție alternativă, am decis să stochez mai multe fișiere .txt pe card, fiecare conținând notele
corespunzătoare unei melodii. Am citit notele din fișierul selectat într-un vector și le-am redat folosind
funcția “note” din Arduino IDE.

Am implementat un buton pentru schimbarea melodiilor și un alt buton pentru a pune pauza redarii
unei melodii. În timpul redarii, cele 3 LED-uri își schimbă culorile în funcție de nota redată în prezent
de difuzor.

Am încercat să îmbunătățesc procesul de eliminare a rezonanțelor provocate de contactele
imperfecte ale butonului prin adăugarea unui condensator în serie cu fiecare buton. Cu toate acestea,
butoanele tot nu functionau corespunzator, asadar, am adaugat o metoda de debouncing pentru a
detecta o singura apasare de buton.

Am fost nevoit să folosesc o lista restransa de melodii, deoarece adaugarea ecranului LCD, si implicit
a bibliotecii “LiquidCrystal_I2C”, supraincarca memoria placii Arduino si componentele nu mai
funcționau corect.
Dupa ce erau citite doua melodii de pe cardul SD, memoria se incarca si programul se bloca la citirea
urmatoarei melodii.

Din punct de vedere hardware, versiunea finală a proiectului a suferit câteva modificări. Am
economisit pini prin adăugarea a încă 2 LED-uri RGB și am optat pentru un LCD cu interfață I2C în

2025/10/06 13:43 9/9 Music Player

CS Open CourseWare - http://ocw.cs.pub.ro/courses/

locul celui standard. De asemenea, am adăugat un amplificator LM386 pentru a amplifica sunetul unui
difuzor SparkFun de 0.5W.

Dezvolatarea acestui proiect nu a fost una usoara. Pe parcusului acesteia am intampinat probleme in
ceea ce priveste constructia hardware-ului cat si dezvoltarea corecta a software-ului, insa rezultatul
final, desi este unul mai simplu decat mi-am propus initial, este unul complet functional.

Download

PDF Proiect

Jurnal

3 mai - documentatie initiala
14 mai - hardware
25 mai - software

Bibliografie/Resurse

Diagrama bloc - https://app.diagrams.net
Schema cablaj - https://fritzing.org
LCD I2C - https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library
SD library - https://github.com/arduino-libraries/SD

From:
http://ocw.cs.pub.ro/courses/ - CS Open CourseWare

Permanent link:
http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

Last update: 2023/05/25 21:12

http://ocw.cs.pub.ro/?do=export_pdf
https://app.diagrams.net
https://fritzing.org
https://github.com/fdebrabander/Arduino-LiquidCrystal-I2C-library
https://github.com/arduino-libraries/SD
http://ocw.cs.pub.ro/courses/
http://ocw.cs.pub.ro/courses/pm/prj2023/abirlica/music_player

	Music Player
	Introducere
	Descriere generală
	Hardware Design
	Schema cablaj
	Software Design
	Rezultate Obţinute
	Concluzii
	Download
	Jurnal
	Bibliografie/Resurse

