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1. Probability Distributions

1.1 Probability Theory Basics

Probability theory is the study of how likely it is that random events will occur. It is a branch of
mathematics that is used in many different fields, including statistics, physics, economics, and
engineering.

Random events are events that cannot be predicted with certainty, but that can still be described
according to their likelihood. For example, the outcome of a coin toss is a random event, because it
is impossible to predict whether the coin will land heads or tails before it is tossed. However, we
can still describe the likelihood of each outcome based on the fact that there are two equally likely
possibilities.

Probability theory provides a mathematical framework for describing the likelihood of random
events. It does this by using probability measures, which assign a value between 0 and 1 to each
event. A probability of 0 means that the event is impossible, a probability of 1 means that the event
is certain, and a probability between 0 and 1 means that the event is possible, but not certain.

There are two main types of probability measures: discrete probability measures and continuous
probability measures. Discrete probability measures are used to describe the likelihood of discrete
events, such as the outcome of a coin toss or the number of heads that appear when a fair coin is
tossed 10 times. Continuous probability measures are used to describe the likelihood of continuous
events, such as the height of a randomly selected person or the temperature on a random day in
June.

The first axiom of probability theory states that the value of probability of an event A lies between
0 (impossibility) and 1 (certainty):

0 ≤ P(A)≤ 1 (1.1)
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A denotes the event “not A”. For example, if A stands for “it rains”, A stands for “it does not rain”.
The second axiom of probability theory says that the probability of an event A is equal to 1 minus
the probability of the event A:

P(A) = 1−P(A) (1.2)

Suppose that one event, A is dependent on another event, B. Then P(A | B) denotes the conditional
probability of event A, given event B. The fourth rule of probability theory states that the probability
P(A ·B) that both A and B will occur is equal to the probability that B occurs times the conditional
probability P(A | B):

P(A ·B) = P(A | B) ·P(B) (1.3)

If P(B) is greater than zero, then equation 1.3 can be written as

P(A | B) =
P(A ·B)

P(B)
(1.4)

An important condition that we will often assume is that two events are mutually independent. For
events A and B to be independent, the probability P(A) does not depend on whether B has already
occurred or not, and vice versa.

Thus, P(A | B) = P(A). So, for independent events, the rule 1.4 reduces to

P(A ·B) = P(A) ·P(B) (1.5)

This is the definition of independence, that the probability of two events both occurring is the
product of the probabilities of each event occurring. Situations also arise when the events are
mutually exclusive. That is, if A occurs, B cannot, and vice versa. As such, we can write the
following

P(A ·B) = P(B ·A) = 0 (1.6)

This is the definition of mutually exclusiveness, that the probability of two events both occurring is
zero.

Let us now consider the situation when either A, or B, or both event may occur. The probability
P(A+B) is given by

P(A+B) = P(A)+P(B)−P(A ·B) (1.7)

Combining 1.6 with 1.7, we get the following expression for mutually exclusive events

P(A+B) = P(A)+P(B) (1.8)
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1.2 Common Probability Distributions
Probability theory operates on a series of fundamental notions:

• Random experiment: any procedure that can be repeated indefinitely and has a well-defined
set of possible outcomes.

• Sample space: the set of all possible outcomes of an experiment.
• Event: a subset of the sample space.
• Probability of an event: the number between 0 and 1 assigned to an event by a probability

measure.

A simple example of a random experiment, and one that is frequently mentioned in probability
theory textbooks is the toss of a coin. It has a defined set of possible outcomes: heads, tails which
constitutes the sample space of the experiment. Each of the two events in the sample space, heads
or tails has an associated probability of occurrence.

Another example of a random experiment is googling something or someone and measuring how
fast the search was performed. The sample space is now made from all possible response times the
search engine will report {t|t > 0} and is no longer discrete, as in the coin toss experiment, but
continuous.

A random variable is a variable that assigns a numerical value to each outcome in a sample space.
In other words, it is a function that takes an outcome as an input and returns a number as an output.
Random variables are used to quantify the uncertainty associated with random experiments.

There are two main types of random variables: discrete and continuous.

• Discrete random variables take on a finite or countably infinite number of values. A discrete
random variable for the coin toss example could map heads to 1 and tails to 0, for example.

• Continuous random variables can take on any value within a certain interval. For the web
search example above, the sample space is already composed of numbers, as the possible
response times of the search query. This is a case in which the random variable could map
the sample space to itself.

Contrary to their definition as functions, random variables are usually denoted with capital letters
such as X ,Y,T without including their parameter.

Given a random variable X that we use to map search engine response times, we can ask the
question: "How likely is that the value of this random variable for a web search is equal to a tenth
of a second?". We can write this as a probability P(X = 0.1).

If we record all probabilities of all the outputs of a random variable X , we get the probability
distribution of X.

Then we can ask another question: "What is the probability that a web search will yield a result
in less than a tenth of a second?". To answer this, we will need to use the cumulative distribution
function (CDF).
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1.2.1 Cumulative Distribution Functions
The CDF of a random variable X is a function that gives the probability that X is less than or equal
to a certain value x. We usually note CDF by FX(x), or, if the random variable is implicit or there’s
no ambiguity, just by F(x):

FX(x) = P(X ≤ x) (1.9)

CDF is a non-decreasing function, meaning that as x increases, the CDF(x) also increases.

The CDF is a useful tool for understanding the distribution of a random variable. It can be used to
calculate probabilities, such as the probability that a random variable will be between two values.

■ Example 1.1 For a coin toss experiment, we can define the CDF as:

F(x) =


0 ,x < 0
q ,0 ≤ x < 1
1 ,x ≥ 1

(1.10)

If the coin is fair, then q = 0.5. ■

−1 0 1 2

0

0.5

1

x

F(
x)

Figure 1.1: CDF of the random coin toss experiment

In computing, we are most often interested in time as a continuous random variable: time of
completion of a certain query, system uptime, reliable operation time etc. Therefore, we will be
frequently using CDF as F(t) for positive values of time: 0 ≤ t < ∞.
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Definition 1.2.1 — CDF Properties. The CDF for a continuous random variable that has only
positive values has the following properties:

0 ≤ F(t)≤ 1∀t ≥ 0 (1.11)

F(0) = 0 (1.12)

lim
t→∞

F(t) = 1 (1.13)

F(t) is a monotone increasing function of time (1.14)

■ Example 1.2 F(t) = 1+2e−3t −3e−2t is a valid CDF and is plotted in Figure 1.2. ■
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Figure 1.2: CDF of a continuous random variable

1.2.2 Probability Density Functions
Another important metric used in reliability is the probability density function (PDF) of a continuous
random variable X . It is a function that describes the relative probability of each value of X and is
denoted by f (x).

In other words, the PDF gives the probability that X will take on a value in the infinitesimally small
interval from x to x+dx.

For a continuous random variable X , there is an immediate link between the cumulative distribution
function F(x) and the probability density function f (x):

f (x) =
dF(x)

dx
(1.15)
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Definition 1.2.2 — PDF Properties. Looking at the properties of the CDF F(t), we can deduce
the following properties for the PDF, f (x):∫

∞

0
f (x)dx = 1 (1.16)

F(t) =
∫ t

0
f (x)dx (1.17)

P(X ≥ t) =
∫

∞

t
f (x)dx (1.18)

P(a ≤ X ≤ b) =
∫ b

a
f (x)dx = F(b)−F(a) (1.19)

■ Example 1.3 Taking our previous example of the CDF F(t) = 1+2e−3t −3e−2t we can derive
f (t) =−6e−3t +6e−2t , as plotted in Figure 1.3. ■
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Figure 1.3: PDF of a continuous random variable

1.2.3 The Expected Value of a Random Variable
When dealing with random variables, a key objective is to identify the average value that represents
the overall outcome of the underlying random experiment.

The expected value of a random variable, intuitively, is the long-run average value of repetitions of
the experiment it represents.

For example, the expected value in rolling a six-sided die is 3.5 because, roughly speaking, the
average of all the numbers that come up in an extremely large number of rolls is very nearly always
quite close to three and a half.

Definition 1.2.3 — Expected value of a random variable. Suppose random variable X can
take value x1 with probability p1, value x2 with probability p2, and so on, up to value xk with
probability pk. Then the expected value of this random variable X is defined as:

E[X ] = p1x1 + p2x2 + p3x3 + ..+ pkxk (1.20)

Since all probabilities pi add up to one (p1 + p2 + ..+ pk = 1), the expected value can be viewed
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as the weighted average, with pi being the weights:

E[X ] =
p1x1 + p2x2 + p3x3 + ..+ pkxk

1
=

p1x1 + p2x2 + p3x3 + ..+ pkxk

p1 + p2 + ..+ pk
(1.21)

■ Example 1.4 Let X represent the outcome of a roll of a fair six-sided die. More specifically, X
will be the number of pips showing on the top face of the die after the toss. The possible values for
X are 1, 2, 3, 4, 5, and 6, all equally likely (each having the probability of 1

6 . The expectation of X
is

E[X ] = 1 · 1
6
+2 · 1

6
+3 · 1

6
+4 · 1

6
+5 · 1

6
+6 · 1

6
= 3.5 (1.22)

If one rolls the die n times and computes the average (arithmetic mean) of the results, then as n
grows, the average will almost surely converge to the expected value, a fact known as the strong law
of large numbers. One example sequence of ten rolls of the die is 2, 3, 1, 2, 5, 6, 2, 2, 2, 6, which
has the average of 3.1, with the distance of 0.4 from the expected value of 3.5. The convergence
is relatively slow: the probability that the average falls within the range 3.5±0.1 is 21.6% for ten
rolls, 46.1% for a hundred rolls and 93.7% for a thousand rolls. ■

Definition 1.2.4 — Expected value for a continuous random variable. If the probability
distribution of X admits a probability density function f(x), then the expected value can be
computed as:

E[X ] =
∫

∞

−∞

x f (x)dx (1.23)

Since in most reliability calculations the random variable is time, which is quantified from 0 to
infinity, we can simplify the previous expression to:

E[X ] =
∫

∞

0
t f (t)dt,∀t ≥ 0 (1.24)

■ Example 1.5 Taking our previous example of the probability density function f (t) =−6e−3t +
6e−2t , we can assess its expected value by plugging it into the previous equation:

E[X ] =
∫

∞

0
t
(
−6e−3t +6e−2t)dt =

(
1
6

e−3t(12t −9et(2t +1)+4)+ c
)∣∣∣∣∞

0
=

5
6

(1.25)

■

1.2.4 Probability Distributions Commonly Used in Reliability
Probability distributions play a crucial role in reliability assessment. For discrete random variables,
the binomial and Poisson distributions are particularly useful. When dealing with continuous
random variables, the normal, Weibull, and exponential distributions are commonly employed.
Additionally, the lognormal, the uniform distribution, Student’s t-distribution, and chi-square (χ2)
distribution find applications in specific reliability evaluation scenarios.

The Binomial Distribution
The binomial distribution is a discrete probability distribution that calculates the likelihood of
obtaining x positive outcomes in n trials, given that the probability of success in each trial is p. It’s
frequently used to model real-world scenarios involving discrete events, such as the number of
heads in multiple coin flips or the number of defective items in a batch.
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Definition 1.2.5 — Probability function of the binomial distribution. We can attach a proba-
bility function to the binomial distribution as follows:

p(x) =Cx
n px(1− p)n−x (1.26)

■ Example 1.6 Imagine a scenario where you’re inspecting a batch of 100 light bulbs to determine
the proportion of faulty ones. If you know that the overall defect rate is 5%, the binomial distribution
can help you predict the probability of finding a specific number of defective bulbs in your sample.
For instance, the probability of finding exactly 2 defective bulbs in your sample can be calculated
using the binomial distribution formula:

p(x = 2) =C2
1000.052(1−0.05)100−2 ≈ 0.081(8.1%) (1.27)

■

The Poisson Distribution
The Poisson distribution is a discrete probability distribution that models the number of events that
occur in a fixed interval of time or space, given a known average rate of occurrence. It is named
after French mathematician Simeon Denis Poisson, who introduced the distribution in 1837.

The Poisson distribution is better suited than the binomial distribution for events that have a low
probability of occurrence.

Definition 1.2.6 — Probability function of the Poisson distribution. The function is character-
ized by the average rate of occurrence λ (lambda) that has a value of λ = p×n, where n is the
number of trials, given that the probability of success in each trial is p:

p(x) =
λ xe−λ

x!
(1.28)

■ Example 1.7 Using the same light bulb example from the binomial distribution, we can calculate
the probability of getting 2 defective light bulbs in a batch of 100, if the defect rate is 5% as:

λ = 0.05×100 (1.29)

p(x = 2) =
λ 2e−λ

2!
≈ 0.09(9%) (1.30)

■

The Normal Distribution
The normal distribution, also known as the Gaussian distribution, is one of the most widely used
probability distributions in statistics. It is a continuous probability distribution that is bell-shaped,
symmetrical, and unimodal. This means that most of the data points in a normal distribution are
clustered around the middle of the distribution, and the distribution tails off gradually towards either
extreme.
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Definition 1.2.7 — Probability function of the normal distribution. The normal distribution
has the following probability density function:

f (x) =
1

σ
√

2π
exp

(
−1

2

(
x−µ

σ

)2
)

(1.31)

The normal distribution is also characterized by its mean µ and standard deviation σ . The mean is
the average of all the data points in the distribution, and the standard deviation is a measure of how
spread out the data is:

σ =

√√√√ n
∑

i=1
(xi −µ)2

n−1
(1.32)

, where µ is the mean:

µ =

n
∑

i=1
xi

n
(1.33)

The CDF of the normal distribution is expressed as:

F(x) =
∫ x

−∞

f (t),dt =
1
2

[
1+ erf

(
x−µ

σ
√

2

)]
(1.34)

, where er f (x) is the error function and gives the probability of a random variable with normal
distribution falling in the range [−x,x]

The normal distribution is often used to model data that is naturally occurring, such as heights of
people or test scores. It is also used in many statistical analyses, such as hypothesis testing and
confidence intervals.

One particular case is the standard normal distribution which is a normal distribution with µ = 0
and σ = 1 (Figure 1.4)

The Weibull Distribution
The Weibull distribution is a continuous probability distribution with a wide range of applications
in reliability analysis and modeling the lifetime of components. It is characterized by its shape
parameter, which determines the shape of the distribution, and its scale parameter, which determines
the scale of the distribution.

Definition 1.2.8 — Probability function of the Weibull distribution. The Weibull distribution
has the following probability density function, where λ represents the scale parameter and β

represents the shape parameter:

f (x) =
β

λ

( x
λ

)β−1
e−(x/λ )β

(1.35)

The cumulative distribution function (CDF) of the Weibull distribution is given by:

F(x) = 1− e−(x/λ )β

(1.36)
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Figure 1.4: Standard normal distribution probability density function

The Weibull distribution is often used to model the failure times of components that experience
wear and tear over time. It is also used to model the lifetimes of biological organisms and the times
between events in a variety of other applications.
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Figure 1.5: Weibull distribution probability density function for different values of λ and β

When the time duration until a failure occurs is represented by the random variable X , the Weibull
distribution provides a probability distribution where the failure rate is directly proportional to
a power of time. The shape parameter, β , corresponds to that power plus one, allowing for a
straightforward interpretation of its value:

• β < 1: The failure rate decreases over time. This scenario arises when there is a significant
amount of "infant mortality," meaning defective items fail early, and the failure rate diminishes
as these defective items are gradually eliminated from the population.

• β = 1: The failure rate remains constant over time. This could indicate that random external
events are causing failures or that the underlying failure mechanism is time-independent. In
this case, the Weibull distribution simplifies to the exponential distribution.

• β > 1: The failure rate increases over time. This situation occurs when there is an "aging"
process, where components become more prone to failure as time progresses. This could
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be due to wear and tear, fatigue, or other cumulative factors that gradually degrade the
component’s integrity.

In summary, the Weibull distribution offers a flexible framework for modeling failure rates across
various scenarios, ranging from decreasing failure rates due to infant mortality to increasing failure
rates due to component aging.

The Exponential Distribution
The exponential distribution is a continuous probability distribution that describes the time between
events in a Poisson process. It is a memoryless distribution, meaning that the probability of an
event occurring in a given interval is independent of the time that has elapsed since the last event.

The exponential distribution is a special case of the Weibull distribution in which the shape
parameter β = 1. Therefore, the exponential distribution is characterized only by its rate parameter,
λ (lambda), which represents the average number of events that occur per unit of time.

Definition 1.2.9 — Probability function of the exponential distribution. The probability
density function (PDF) of the exponential distribution depends on the rate parameter λ and can
be written as:

f (x) = λe−λx (1.37)

The cumulative distribution function (CDF) of the exponential distribution is given by:

F(x) = 1− e−λx (1.38)

The exponential distribution is widely used in reliability analysis to model the time to failure
of components. It is also used in other fields, such as queuing theory and survival analysis.
Its memoryless property, meaning the likelihood of an event occurring in a specific interval is
independent of the time elapsed since the previous event, makes it well-suited for modeling
processes with independent inter-arrival times, such as:

• Networking traffic congestion: The exponential distribution is used to model the arrival
and departure of data packets in congested networks. This helps in analyzing network
performance under varying traffic conditions and identifying bottlenecks.

• Server performance: The exponential distribution is used to analyze the performance of
servers in handling requests, such as web servers or file servers. This helps in predicting
server response times and ensuring efficient resource utilization.

• Predictive analytics: The exponential distribution is used in predictive analytics models to
forecast future events, such as system failures or traffic congestion patterns. This enables
businesses to take proactive measures to prevent disruptions and optimize resource allocation.

■ Example 1.8 We can use the exponential distribution to model the arrival of web requests:
suppose that the average number of web requests per minute is 10. The rate parameter can then
be calculated as λ = 10. Using this rate parameter, we can calculate the probability of receiving
a web request in any given minute. The probability of receiving a request in the next minute is
1− e−10 ≈ 0.995. ■

■ Example 1.9 The exponential distribution can also be used to model the waiting time for a web
request. The waiting time is the time that it takes for a request to be queued up and processed by
the web server. The waiting time can be calculated by using the cumulative distribution function
(CDF) of the exponential distribution. For example, the probability of waiting for more than 10
seconds for a web request is 1−F(10)≈ 0.368. ■





2. Modeling Reliability

2.1 Reliability and Availability

Fault tolerance is the ability of a system to continue functioning in spite of malfunctions or faults.
As a notion, it is tightly coupled with the concept of reliability, the lack of defects and the availability
of a system.

2.1.1 Reliability

The reliability of a system is its ability to function correctly over a given time period. Mathemati-
cally, the reliability R(t) of a system at time t is the probability that the system operates without
failure in the interval [0,t), given that the system was performing correctly at time 0. As a probability
function, its values lie in the [0, 1] interval.

Definition 2.1.1 — Reliability function. We can express the reliability of a system S at time t
by:

R(t) = P(S is fully operational in [0, t]) (2.1)

Notice that we are assuming the system is functioning until it completely stops its normal operation
and we are not factoring in the possibility of the system to be repaired. This measure is suitable
for applications in which even a momentary disruption can prove costly, for example the autopilot
system of a passenger airplane, for which failure would result in catastrophe.

We can consider a random variable X to be the lifetime, or the time until a failure occurs for system
S. We can also consider F(t) to be the corresponding cumulative distribution function (CDF) for
the random variable X . We can then write the system reliability as:

R(t) = P(X > t) = 1−F(t) (2.2)
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It is usually considered that the system in operation at t = 0 without any faults, therefore we can
write that R(0) = 1. Also, as it is deeply ingrained in this Universe that any working system will
cease to operate at some future point in time, we can assume limt→∞ R(t) = 0.

We can therefore infer that R(t) is a decreasing, continuous, monotone function with values ranging
between 0 and 1 in the interval [0,∞) as in Figure 2.1.
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Figure 2.1: Relationship between Reliability and the CDF of a system

Let us consider f (t) the probability density function (PDF) of the system. We have already
established its relationship with the CDF of the system to be F(t) =

∫ t
0 f (τ)dτ , therefore we can

infer that the reliability function, as the inverse of the CDF, can be written as:

R(t) =
∫

∞

t
f (τ)dτ (2.3)

Therefore, in a graphical representation, reliability R(t) represents the area under the f (t) curve
from t to infinity, as in Figure 2.2.
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Figure 2.2: Graphical representation of the meaning of Reliability
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2.1.2 Failure Rate

So far we have quantified the probability of a fault not happening in a given time interval. It is
also of interest to determine the probability a fault will happen at a given time, or, in a quantifiable
small interval [t, t +∆t], given that the system has functioned properly until time t. We can write
this probability as:

P(t < X < t +∆t | X > t) =
P(t < X < t +∆t)

P(X > t)
=

F(t +∆t)−F(t)
R(t)

(2.4)

Definition 2.1.2 — Failure rate. The instantaneous failure rate, also named the hazard function
or the age-dependent failure rate of the system is defined as:

λ (t) = lim
∆t→0

F(t +∆t)−F(t)
R(t)∆t

= lim
∆t→0

R(t)−R(t +∆t)
R(t)∆t

=
f (t)
R(t)

(2.5)

Plotting the failure rate as a function of time to time yields a distinctive shape called the "bathtub
curve", such as the one in Figure 2.3.

Manufacturing or design defects tend to lead to failure in the initial stage of a product’s life. This
stage is also known as "infant mortality" and is characterized by a large but decreasing failure
rate, as more products are eliminated from the initial batch due to failures. Infant mortality can be
eliminated at the manufacturing stage through system testing and accelerated aging of the product
before it is sold or released into circulation.

Once this stage is over, the product enters a period in which failure rate is constant. This is usually
the stage at which the product experiences its entire useful life. Fault rate is non-zero but low and is
typically due to environmental conditions.

In the last stage, failure rate increases due to extensive wear. A failure becomes more likely as
more time goes by, until all of the products from the initial population become defective.

Infant Mortality Constant Failure Rate Wear-Out
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Figure 2.3: Bathtub curve for the failure rate of a system

In engineering and reliability analysis, the failure rate λ of a system or component is the frequency
with which it fails, expressed in failures per unit of time. It represents the probability of a failure
occurring within a specified time interval. The failure rate is a key metric for understanding



22 Chapter 2. Modeling Reliability
the reliability and lifespan of a system, and it can be used to make informed decisions about
maintenance and replacement schedules.

Failure rates can be calculated in different ways, depending on the type of system and the available
data. For example, the failure rate of a component may be calculated based on historical data of
failures, or it may be estimated using statistical methods or accelerated life tests.

■ Example 2.1 Usually, failure rate is expressed as a constant and is measured in failures per unit
of time. For example, a light bulb might have a measured failure rate of 0.001 failures per hour, a
solid-state drive might have 0.000015 failures per hour and a passenger airplane a typical failure
rate of 0.000000001 per hour ■

Failure rates can be affected by a number of factors, including the design of the system, the quality
of the components, and the operating environment.

The impact of these factors can be expressed through the following empirical failure rate formula:

λ = πLπQ(C1πT πV +C2πE) (2.6)

where the notations are as follows:

• λ - Failure rate of component.
• πL - Learning factor, associated with how mature the technology is.
• πQ - Quality factor, representing manufacturing process quality control (ranging from 0.25 to

20.00).
• πT - Temperature factor, with values ranging from 0.1 to 1000. It is proportional to e

Ea
kT ,

where Ea is the activation energy in electron-volts associated with the technology, k is the
Boltzmann constant (8.6173×10−5eV/K), and T is the temperature in Kelvin.

• πV - Voltage stress factor for CMOS devices; can range from 1 to 10, depending on the supply
voltage and the temperature; does not apply to other technologies (where it is set to 1).

• πE - Environment shock factor; ranges from very low (about 0.4), when the component is in
an air-conditioned office environment, to very high (13.0) when it is in a harsh environment.

• C1,C2 - Complexity factors; functions of the number of gates on the chip and the number of
pins in the package.

This formula was taken from MIL-HDBK-217E, MILITARY HANDBOOK: RELIABILITY
PREDICTION OF ELECTRONIC EQUIPMENT (27 OCT 1986), written by the U.S. Department
of Defense to address reliability modeling of their electronic equipment.

In the harsh environment of space, where charged particles abound and extreme temperature
fluctuations occur, electronic devices are more prone to malfunctions compared to their counterparts
in the controlled climate of air-conditioned offices. Similarly, computers in automobiles, subjected
to intense heat and vibrations, and those in industrial settings, exposed to harsh conditions, face
elevated failure rates.

Software failure rate usually decreases as a function of time. A possible curve is shown in Figure
2.4. The three phases of evolution are: test/debug (I), useful life (II) and obsolescence (III).

Software failure rate during useful life depends on the following factors:

1. software process used to develop the design and code
2. complexity of software,
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3. size of software,
4. experience of the development team,
5. percentage of code reused from a previous stable project,
6. rigor and depth of testing at test/debug (I) phase.

Test/Debug Useful Life Obsolescence
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Figure 2.4: The failure rate curve for software versus time

Compared to hardware, software failure curves exhibit two distinct characteristics. Firstly, soft-
ware’s failure rate tends to spike after each feature update during its useful-life phase. This is
because upgrades often introduce new functionalities, leading to increased complexity and con-
sequently a higher likelihood of faults. However, following the initial surge in failures, the rate
gradually stabilizes, partly due to bug fixes implemented after the upgrades. Secondly, unlike
hardware, software does not experience a progressive increase in failure rate during its final phase.
In this stage, software approaches obsolescence, and the need for further upgrades or modifications
diminishes.

2.1.3 Mean Time Between Failures
Another metric to assess a system’s fault tolerance is the Mean Time Between Failures (MTBF).
This parameter is derived from observing the system’s behavior during its operational lifespan. The
simplest model incorporating fault tolerance assumes the system transitions between two states:
fully operational and completely failed. These transitions occur upon failure or after system repair,
as depicted in Figure 2.5.

1 0

Fault

Repair

Figure 2.5: Simple state transition graph for a system with failure and repair

This two-state model can be applied to simple systems like light bulbs, which can either illuminate
or be burned out, and wires in circuits, which can either be connected or interrupted. It can also be
extended to more complex systems like cars and web servers, but the definitions of "operational" and
"failed" need to be tailored to the specific context. For instance, an operational web server would
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be fully responsive to client requests, while a failed web server could be completely unresponsive
due to a crash or undergoing maintenance.

Visualizing the system’s behavior over time reveals alternating intervals of operational periods and
repair downtime. As depicted in Figure 2.6, the system initially operates until it encounters a failure,
marking the end of the first Time-To-Fail (T T F1) interval. Subsequently, the system transitions
into the first Time-To-Repair (T T R1) interval, representing the time it takes to restore functionality.
This pattern of alternating operational and repair intervals persists throughout the system’s lifespan.

time

T T F1 T T R1 T T F2 T T R2 T T F3

0 F R F R F R F R F

Figure 2.6: The lifetime of a system with consecutive functioning and repair episodes

Measuring these intervals and averaging their values over a long observational period yields two
important metrics: the Mean Time to Failure, or MTTF which is an average of all Time-To-Fail
(TTF) intervals, and the Mean Time to Repair, or MTTR, which is the average of all Time-To-Repair
intervals.

MT T F = ∑
i

T T Fi

n
MT T R = ∑

i

T T Ri

n
(2.7)

Definition 2.1.3 — Mean Time Between Failures. Using the above two notions, we can define
the Mean Time Between Failures, MTBF as the average expected time between two failures for
a repairable system:

MT BF = MT T F +MT T R (2.8)

2.1.4 Availability
Few systems are designed to run indefinitely without downtime or maintenance. Typically, we care
not only about system reliability but also about failure frequency and recovery time. For example,
for web servers, we aim to maximize uptime, the proportion of time the system is operational. This
metric is captured by Availability.

The system’s Availability A(t) at time t denotes the likelihood that the system is operating correctly
at that specific moment. A(t) is alternatively known as point availability or instantaneous availability.
This metric is suitable for scenarios where continuous performance is not crucial, yet prolonged
system downtime would incur substantial costs. For instance, an airline reservation system requires
high availability to avoid customer dissatisfaction and revenue loss due to downtime. However,
occasional very brief failures can be tolerable in such a system.

Definition 2.1.4 — Interval Availability. Often it is necessary to determine the Interval, or
Mission Availability. It is defined by:

A(T ) =
1
T

∫ T

0
A(t)dt (2.9)

A(T) is the value of the point availability averaged over some interval of time T. This interval might
be the life-time of a system or the time to accomplish some particular task.
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Ultimately, it is frequently observed that following an initial transient impact, point availability
stabilizes to a time-independent value. In such instances, we refer to it as Steady-state availability,
alternatively recognized as Long-term Availability denoted by A(∞).

Definition 2.1.5 — Steady-State Availability.

A(∞) = lim
T→∞

A(T ) = lim
T→∞

(
1
T

∫ T

0
A(t)dt

)
(2.10)

The interpretation of A(∞) lies in its representation as the probability that the system will be
operational at a randomly chosen moment, and its relevance is confined to systems incorporating
the repair of defective components. In cases where a system is irrepairable, the point availability A(t)
aligns with the system’s reliability—namely, the probability that the system remains operational
from time 0 to t. Consequently, as the time duration T approaches infinity, the steady-state
availability of a non-repairable system converges to zero:

A(∞) = 0 (2.11)

The long-term availability A(∞), or more simply written A, can be calculated from MTTF, MTBF,
and MTTR as follows:

A =
MT T F
MT BF

=
MT T F

MT T F +MT T R
(2.12)

■ Example 2.2 A system with low reliability can still exhibit high availability. For example,
imagine a communication channel that is down every couple of hours but its takes only 3 seconds
to reestablish connection. We can compute the MTBF as 2 hours (7200 seconds) and the MTR as 3
seconds. Even if the reliability of such a communication link is low, its availability is quite high:
A = 7200/7203 = 99.96%. ■

Steady-state availability is often specified in terms of downtime per year. Table 2.1 shows examples
for some of the values for availability and the corresponding downtime.

Availability(%) Downtime per year Downtime per month Downtime per week
90% ("one nine") 36.5 days 72 hours 16.8 hours
99% ("two nines") 3.65 days 7.2 hours 1.68 hours
99.9% ("three nines") 8.76 hours 43.2 minutes 10.1 minutes
99.99% ("four nines") 52.56 minutes 4.32 minutes 1.01 minutes
99.999% ("five nines") 5.26 minutes 25.9 seconds 6.05 seconds
99.9999% ("six nines") 31.5 seconds 2.59 seconds 0.605 seconds

Table 2.1: Availability and the corresponding downtime per year.

Availability stands as an essential metric, particularly for systems that can endure short interruptions.
Networked systems, such as telephone switching and web servers, provide concrete illustrations of
this principle. Telephone users anticipate seamless call completion without disruptions, accepting
an annual downtime of up to three minutes. Research indicates that web users’ tolerance diminishes
if websites take more than eight seconds to display results. Consequently, these websites must
maintain continuous availability and swift responsiveness, even amid substantial concurrent user
traffic.
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The electrical power control system serves as another notable example. Consumers expect an
uninterrupted power supply 24/7, regardless of weather conditions. Prolonged power outages can
pose health risks, disrupting essential services like water pumps, heating, lighting, and medical
care. Industries also face substantial financial losses in the event of power disruptions.

2.2 Failure Rate, Reliability, and Mean Time to Failure for an Exponential Fault
Distribution
In this section we will approach the derivation of reliability and Mean Time Between Failures
(MTBF) from the fundamental concept of failure rate. We focus on a component operational at t=0
and sustained in operation until encountering a failure. Our consideration involves the assumption
that failures adhere to an exponential probability distribution.

Let’s now assume that all failures are permanent and irreparable. Let T represent the random
variable "lifetime of the component" (indicating the time until failure). Additionally, let f(t) and F(t)
denote the probability density function (PDF) of T and the cumulative distribution function (CDF)
of T, respectively. As established in the preceding chapter, we determined that these functions are
interrelated as follows:

f (t) =
dF(t)

dt
F(t) =

∫ t

0
f (τ)dτ ∀t ≥ 0 (2.13)

The PDF f(t) can be understood as the probability the system will fail at time t. For a tiny
∆t, f (t)∆t ≈ Prob(t ≤ T ≤ t +∆t). f(t) is a probability density function, therefore the following
will be true:∫

∞

0
f (t)dt = 1 f (t)≥ 0,∀t ≥ 0 (2.14)

In the context of the random variable defined above as the lifetime of a component, F(t) can be
viewed as probability that the system will exhibit a failure anywhere in (0,t]:

F(t) = Prob(t ≤ T ) (2.15)

Conversely, R(t) if the inverse of F(t) and can be defined as the probability the system functions
without failure until time t:

R(t) = Prob(T > t) = 1−F(t) (2.16)

As we defined it in the previous chapter, the failure rate of a system λ (t) gives us the probability
the system will fail at time t:

λ (t) =
f (t)

1−F(t)
(2.17)

Since f (t) = dF(t)
dt =−dR(t)

dt , we can rewrite the expression above:

λ (t) =−dR(t)
dt

1
R(t)

(2.18)
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As previously mentioned, for the active life of a system we can consider the failure rate to be
constant, λ (t) = λ . This simplifies the previous equation and makes it trivial to solve:

dR(t)
dt

=−λR(t) (2.19)

We can assume R(0) = 1 and we can solve 2.19 for R(t):

R(t) = e−λ t (2.20)

This equation links the reliability of a system to its constant failure rate λ , if the system is within
its normal operational lifetime (the flat constant region of the bathtub curve).

This is the exponential failure law and it is plotted in Figure 2.7.
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Figure 2.7: Reliability function for an exponential distribution of faults

The exponential failure law is very valuable for the analysis of reliability of components and
systems in hardware. However, it can only be used in cases when the assumption that the failure
rate is constant is adequate.

To summarize the definitions we have derived above:

f (t) = λe−λ t F(t) = 1− e−λ t R(t) = e−λ t f or t ≥ 0 (2.21)

Definition 2.2.1 — MTBF for an exponential fault distribution. By definition, the MTBF of an
irreparable component is equal to its expected lifetime, E[T]. As the random variable is time,
which is always greater than zero, we can rewrite 1.23 as:

MT BF = E[T ] =
∫

∞

0
t f (t)dt (2.22)



28 Chapter 2. Modeling Reliability

Substituting f (t) =−dR(t)
dt we get,

MT BF =−
∫

∞

0
t
dR(t)

dt
dt =−tR(t) |∞0 +

∫
∞

0
R(t)dt (2.23)

The value of −tR(t) is equal to 0 at t = 0 and also to zero at t → ∞, as the reliability of every
system asymptotically drops to zero given a long enough time, (R(∞) = 0). Thus, we can write:

MT BF =
∫

∞

0
R(t)dt (2.24)

Given an exponential reliability function with a constant failure rate λ , we can rewrite 2.24
as:

MT BF =
∫

∞

0
R(t)dt =

∫
∞

0
e−λ tdt =

1
λ

(2.25)

2.2.1 Non-constant Failure Rate
Most reliability calculations imply a constant failure rate λ = ct. partly due to the fact that the
analyzed system is thought to be in its operational lifetime, where failure occurrence is random and
partly because a failure rate that is dependant of time will further complicate reliability formulas.

If we would like to model the reliability of a system in its "infant mortality" or its "wear-out"
phases from Figure 2.3, we will need to employ the Weibull probability distribution, which models
appropriately these states.

As presented in a previous section of this work, the Weibull distribution has two parameters, λ - the
shape parameter and β - the scale parameter. We can rewrite equation 1.35 for t ≥ 0 and get the
PDF:

f (t) = λβ tβ−1e−λ tβ

(2.26)

We can derive the failure rate, but in this case it will not be constant:

λ (t) = λβ tβ−1 (2.27)

By varying the value of β we have the following three cases:

• β > 1: failure rate is a decreasing function of time (used for modeling infant mortality).
• β = 1: failure rate is constant λ and we use the reliability formulas derived in the previous

section for the exponential distribution.
• β < 1: failure rate is an increasing function of time (modeling wear-out).

We can also derive the reliability function when using a Weibull distribution by plugging in the new
formula for λ (t) in equation 2.18 and solving for R(t):

R(t) = e−λ tβ

(2.28)
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Note that reliability now depends also of β and a similar discussion can be made for R(t)’s properties
for β < 1, beta = 1 and beta > 1.

We can also derive the MTBF from this new reliability formula as:

MT BF =
∫

∞

0
R(t)dt =

Γ(β−1)

βλ β−1 (2.29)

Definition 2.2.2 — Gamma function. Γ(x) is the gamma function, which is an extension of
the factorial function for real number values. It can be computed that Γ(x) =

∫
∞

0 yx−1e−ydy, and,
as a factorial function, it will also satisfy the following:

Γ(0) = Γ(1) = 1

Γ(x+1) = (x)Γ(x) ∀x > 1

If x is a positive integer, then Γ(x) = (x−1)!
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3. Reliability Block Diagrams

3.1 Modeling Reliability Through Blocks

Within the realm of combinatorial reliability models, reliability block diagrams (RBDs) have
emerged as the most established and prevalent method for analyzing system reliability. These
diagrams offer a simplified representation of a system’s structure and component reliability, uti-
lizing blocks to denote individual components and interconnections between blocks to depict the
operational dependencies among them.

RBDs provide a clear and intuitive graphical representation of system structure and dependencies,
facilitating a straightforward understanding of system behavior. They also enable the calculation of
various reliability metrics, such as system availability, reliability, and mean time to failure (MTTF),
providing valuable insights into system performance.

Also, RBDs can be applied to a wide range of systems, from simple configurations to complex
networks, making them a versatile tool for reliability assessment.

Using RBDs, we can represent, for example, components that are tied in series, as in Figure 3.1
a), components that are linked in parallel, as in Figure 3.1(b) or more complex systems that are
combinations of series-parallel connections.

Module1

Module2

Module1Module2

Figure 3.1: Reliability diagrams for a series (a) and a parallel (b) system
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For a combination of series, parallel RBD, consider a computing unit that consists of two processor
cores that are connected to a shared RAM memory. The reliability block diagram for this system is
depicted in Figure 3.2. The processors are arranged in parallel, as only one functioning processor
is necessary for system operation. The memory, on the other hand, is connected in series, as its
failure would render the entire system inoperable.

Processor1

Processor2

Memory

Figure 3.2: Reliability diagram for a three-component system

Despite their widespread use, reliability block diagrams (RBDs) exhibit certain limitations that
restrict their applicability in certain situations.

Primarily, RBDs adhere to a simplified assumption that system components can only exist in either
an operational or failed state. Additionally, they assume that the system configuration remains
constant throughout the mission. These assumptions preclude the modeling of standby components,
repair processes, and sophisticated fault detection and recovery mechanisms.

Furthermore, RBDs operate under the assumption of independent component failures. This assump-
tion implies that the sequence in which components fail does not affect the overall system reliability.
However, in reality, the order of failures can significantly impact the system’s ability to function.

These limitations suggest that RBDs may not be suitable for modeling complex systems where
standby components, repair mechanisms, or intricate fault detection and recovery strategies are
employed, or where the order of component failures significantly affects system reliability.

In this section, we consider some canonical structures, out of which more complex structures can
be constructed.

We start with the basic series and parallel structures, continue with non-series/parallel ones, and
then describe some of the many resilient structures that incorporate redundant components (next
referred to as modules).

In the next sub-sections, we will use the following notations:

• Ri = pi, the reliability of block i, meaning the probability that functional block i is working
properly

• Qi = qi = 1− pi, the probability that functional block i is defective
• R, the reliability of the whole system (i.e. the probability that the whole system is functioning

properly)
• Q = 1−R, the probability that the whole system is defective
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3.2 Series Structures
A series system consists of N interconnected modules, where the malfunction of any individual
module leads to the entire system’s failure. It is crucial to note that the diagram in Figure 3.3
represents a reliability diagram, not necessarily an electrical circuit. The output of the first module
may not always directly connect to the input of the second module.

R1 R2 R3 RN

Figure 3.3: Reliability diagram for a series system

For such a system to function properly, all its units must function properly. Assuming that the
modules in Figure 3.3 fail independently of each other, the reliability of the entire series system is
the product of the reliabilities of its N modules.

Denoting with Rs(t) the reliability of the whole system we can write the following,

Rs = P(1∧2∧3∧ ..∧N) = p1 · p2 · p3 · ·... · pN (3.1)

If we denote by Ri(t) the reliability of module i, we can rewrite the equation,

Rs(t) =
N

∏
i=1

Ri(t) (3.2)

Also,

Qs(t) = 1−Rs(t) = 1−
N

∏
i=1

(1−Qi(t)) (3.3)

N

∏
i=1

(1−Qi(t))= 1−(Q1(t)+Q2(t)+..+QN(t))+(Q1(t)Q2(t)+Q1(t)Q3(t)+..+QN−1(t)QN(t))−..

(3.4)

Usually, in order for the whole system to have a high reliability, each block needs to have a high
reliability Ri ≥ 0.9, which means that Qi is very small, so we can neglect factors that contain a
product of at least two Qi factors. Therefore, we can rewrite Equation 3.4 as,

N

∏
i=1

(1−Qi(t))≈ 1− (Q1(t)+Q2(t)+ ..+QN(t)) = 1−
N

∑
i=1

Qi(t) (3.5)

If we input this into Equation 3.3, we get:

Qs(t) = 1− (1−
N

∏
i=1

(1−Qi(t))) =
N

∑
i=1

Qi(t) (3.6)

If module i has a constant failure rate, denoted by λi, then, Ri(t) = e−λit , and consequently:
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Rs(t) =
N

∏
i=1

eλit = e−∑
N
i=1 λit = e−λst (3.7)

From 3.7 we see that the series system also follows an exponential repartition and has a constant
failure rate equal to λs (the sum of the individual failure rates). Using the relation derived in 2.24,
the MTBF of the series system is therefore

MT BFS =
1
λs

=
1

∑
N
i=1 λi

=
1

∑
N
i=1

1
MT BFi

(3.8)

This means that:

MT BFS < MT BFi,∀i = 1,N (3.9)

The failure rate of a series system increases with the number of units that are linked in se-
ries.

λS =
N

∑
i=1

λi (3.10)

For identical systems, with the same failure rate, λi = λ , we can simplify the equation above to:

λS = Nλ (3.11)

■ Example 3.1 Consider the series structure in Figure 3.4. The four modules in this diagram
represent the instruction decode unit (RID), execution unit (REU ), data cache (RDC), and instruction
cache (RIC) in a microprocessor. All four units must be fault-free for the microprocessor to function,
although the way they are physically connected does not resemble a series system.

RID REU RDC RIC

Figure 3.4: Reliability diagram for a series system

Let’s assume the modules have the following constant reliabilities: RID = 0.9, REU = 0.95, RDC =
0.99, RIC = 0.89. Then, the total reliability of the microprocessor is:

RS = RID ·REU ·RDC ·RIC = 0.9 ·0.95 ·0.99 ·0.89 ≈ 0.75 (3.12)

As a general rule, the reliability of a series structure is lower than the reliability of its individual
components. This can be explained by the fact there are more states in which two modules can fail
when working together than individually. It can be noted that, for the processor to have a 99.9%
reliability (which is a common figure for today’s PCs), the reliability of each of the four subsystems
needs to be at least R = 4

√
0.999 ≈ 0.9998 If we increase the number of components that are linked

in series even further, the overall reliability will decrease asymptotically towards zero.

For example, if we link together an ever increasing number of systems with reliability R = 0.9, we
will get the following decrease in overall reliability:
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• 2 systems: RS = 0.92 = 81%
• 3 systems: RS = 0.93 = 72.9%
• 4 systems: RS = 0.94 = 65.61%
• 5 systems: RS = 0.95 = 59.05%
• 6 systems: RS = 0.96 = 53.14%

This decrease in reliability is shown in Figure 3.5.
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Figure 3.5: Reliability of a series system with increasing number of identical components: single
component reliability (R1) from 90% to 99.9%

3.3 Parallel Structures
A parallel system is defined as a set of N modules connected together so that it requires the failure
of all the modules for the system to fail, as in Figure 3.6.

To get to a reliability formula for the parallel structure, we will have to first consider the probability
that the whole system will malfunction (Qp(t)). This will happen when all the blocks malfunction,
so block 1, block 2 through block N are all defective. We can express that by:

QP(t) = P(1∧2∧ ..∧N) =
N

∏
i=1

Qi(t) (3.13)

where all blocks are independent and Qi(t) is the probability that block i is faulty.

We can therefore express the reliability of a parallel structure of N modules by:

RP(t) = 1−QP(t) = 1−
N

∏
i=1

Qi(t) = 1−
N

∏
i=1

(1−Ri(t)) (3.14)
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R1

R2

RN

Figure 3.6: Reliability diagram for a parallel system

If every module has a constant failure rate λi, then we can write:

RP(t) = 1−
N

∏
i=1

(1−e−λit) =
N

∑
i=1

e−λit −
N

∑
i=1, j=1,i ̸= j

e−(λi+λ j)t + ..+(−1)N+1
N

∏
k=1

e−λkt (3.15)

To calculate the MTBF, we follow the rule derived in Equation 2.24:

MT BFP =
∫

∞

0
RP(t)dt = (3.16)

=
N

∑
i=1

∫
∞

0
e−λitdt −

N

∑
i=1, j=1,i̸= j

∫
∞

0
e−(λi+λ j)tdt + ..+(−1)N+1

∫
∞

0

(
N

∏
k=1

e−λkt

)
dt = (3.17)

=
N

∑
i=1

∫
∞

0
e−λitdt −

N

∑
i=1, j=1,i̸= j

∫
∞

0
e−(λi+λ j)tdt + ..+(−1)N+1

∫
∞

0

(
e−∑

N
k=1 λkt

)
dt (3.18)

We can simplify Equation 3.18 by integration:

MT BFP =
N

∑
i=1

1
λi

−
N

∑
i=1, j=1,i ̸= j

1
λi +λ j

+ ..+(−1)N+1 1

∑
N
k=1 λk

(3.19)

If all systems have the same failure rate λi = λ j = ..= λN = λ , we can rewrite Equation (78):

MT BFP =
N
λ
− N

2λ
+ ..+(−1)N+1 1

Nλ
=

1
λ

N

∑
i=1

(−1)i+1Ci
N
i

(3.20)

We can easily substitute the sum in Equation 3.20 with the partial sum of the harmonic series:

N

∑
i=1

(−1)i+1Ci
N
i

=
N

∑
i=1

1
i

(3.21)

Therefore, we can simplify Equation 3.20 and write the MTBF of a parallel system with N identical
components as:
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MT BFP =
1
λ

N

∑
i=1

1
i
≈ ln(2N)

λ
(3.22)

Note that the harmonic series is divergent, so a parallel system does not have a constant failure rate.
The failure rate decreases with the increase of the systems that are linked in parallel. We can derive
the global failure rate of a system with N identical modules with failure rate λ that are connected in
parallel using the result in Equation 3.22:

λP =
λ

∑
N
i=1

1
i

(3.23)

■ Example 3.2 A system consists of two components in parallel, as in Figure 3.7. What is the total
reliability, MTBF and the failure rate of the system?

R1

R2

Figure 3.7: Reliability diagrams for a parallel system with two components

We can derive the reliability formula from the general form:

RP(t) = 1−
2

∏
i=1

(1−Ri(t)) = 1− (1−R1(t))(1−R2(t)) = R1(t)+R2(t)−R1(t)R2(t) (3.24)

Presuming R1(t) = e−λ1t and R2(t) = e−λ2t , the MTBF of the system can be expressed as

MT BFP =
∫

∞

0
RP(t)dt =

∫
∞

0
e−λ1tdt +

∫
∞

0
e−λ2t −

∫
∞

0
e−(λ1+λ2)tdt (3.25)

MT BFP =
1
λ1

+
1
λ2

− 1
λ1 +λ2

(3.26)

If both modules are identical, meaning R1(t) = R2(t) = R(t), then we can simplify the reliability
formula to

RP(t) = 2R(t)−R2(t) (3.27)

The MTBF will then be equal to:

MT BFP =
3

2λ
(3.28)
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and the failure rate of the parallel module will be equal to:

λP =
2
3

λ (3.29)

It is worth noting that, as individual reliability functions are 0 ≤ R(t) < 1, RP(t) will always be
greater than R(t), which means that the reliability of the parallel system will always be greater than
the reliability of its individual components.

RP(t) = 2R(t)−R2(t)> R(t),∀R(t) ∈ [0,1) (3.30)

■

■ Example 3.3 If the reliability of two individual components is R1 = R2 = 0.9, then, the total
reliability of the parallel system is RP = 0.99. If we increase the number of systems in parallel, as
in Figure 3.8, the overall system reliability will also increase:

• 2 systems: RP = 1− (1−0.9)2 = 99%
• 3 systems: RP = 1− (1−0.9)3 = 99.9%
• 4 systems: RP = 1− (1−0.9)4 = 99.99%
• 5 systems: RP = 1− (1−0.9)5 = 99.999%
• 6 systems: RP = 1− (1−0.9)6 = 99.9999%

■
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Figure 3.8: Reliability of a parallel system with increasing number of identical components: single
component reliability (R1) of 80%, 90% and 99%
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3.4 Combination of Series and Parallel
While many smaller systems can be accurately represented by either a simple series or parallel
configuration, there may be larger systems that involve both series and parallel configurations in the
overall system. Such systems can be analysed by calculating the reliabilities for the individual series
and parallel sections and then combining them in the appropriate manner. Such a methodology is
illustrated in the following example.

■ Example 3.4 Calculating the Reliability for a Combination of Series and Parallel.

Consider a system with three components. Units 1 and 2 are connected in series and Unit 3 is
connected in parallel with the first two, as shown in Figure 3.9. This is meant to illustrate a real-life
example of a computing structure in which two processor cores are sharing access to a single RAM
memory unit. Each unit has its own reliability function, R1 and R2 for each processor core and R3
for the RAM memory.

R1

R2

R3

Figure 3.9: Reliability diagram for a simple series-parallel system

What is the reliability of the system if R1 = 99.5%, R2 = 98.7% and R3 = 97.3% at 100 hours?

First, the reliability of the parallel segment consisting of Units 1 and 2 is calculated: R12 =
1− (1−R1)(1−R2) = 1− (1−0.995)(1−0.987) = 0.999935

The reliability of the overall system is then calculated by treating Units 1 and 2 as one unit with a
reliability of 99.9935% connected in series with Unit 3. Therefore: R123 = R12R3 = 0.97294 ■

3.5 k Out of n Systems
The k-out-of-n configuration is a special case of parallel redundancy. This type of configuration
requires that at least k components succeed out of the total n parallel components for the system to
succeed.

■ Example 3.5 Consider an airplane that has four engines. Furthermore, suppose that the design
of the aircraft is such that at least two engines are required to function for the aircraft to remain
airborne. This means that the engines are reliability-wise in a k-out-of-n configuration, where k = 2
and n = 4. More specifically, they are in a 2-out-of-4 configuration.

Now, we can derive the overall reliability of such as system if we assume that all four engines have
the same reliability function R(t) as a sum of probabilities.

R2/4(t) = R4(t)+4R3(t)(1−R(t))+6R2(t)(1−R(t))2 (3.31)
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The first term in the probability sum above R4(t) denotes the probability of all four engines being
operational at a certain time. The second term, R3(t)(1−R(t)), denotes the probability of only
three engines being operational at a certain time and, as there are four cases in which a single
engine could fail, we multiply this by a factor of 4. The last term in the sum gives the probability
of a two-engine failure at a certain time. As in the previous case, since there are six instances in
which any two engines could fail (equal to C2

4), the total probability of a two-engine failure for our
airplane is 6R2(t)(1−R(t))2

■

Following this example, we can deduce a general formula for k out of n reliability as being:

Rk/n(t) =Cn
nRn(t)+Cn−1

n Rn−1(t)(1−R(t))+ ..+Ck
nRk(t)(1−R(t))n−k,∀k < n (3.32)

Or, we can express the above sum as:

Rk/n(t) =
n

∑
i=k

Ci
nRi(t)(1−R(t))n−i,∀k < n (3.33)

Even though we classified the k-out-of-n configuration as a special case of parallel redundancy, it
can also be viewed as a general configuration type. As the number of units required to keep the
system functioning approaches the total number of units in the system, the system’s behavior tends
towards that of a series system. If the number of units required is equal to the number of units
in the system, it is a series system. In other words, a series system of statistically independent
components is an n-out-of-n system and a parallel system of statistically independent components
is a 1-out-of-n system.

This can be easily deduced from the previous equation. if we plug in k = n in the general k-out-of-n
reliability formula we get the reliability of a series system:

Rn/n(t) =
n

∑
i=n

Ci
nRi(t)(1−R(t))n−i = Rn(t) (3.34)

If we plug in k = 1 in the same formula, we get the standard reliability of a parallel system with n
identical units:

R1/n(t) =
n

∑
i=1

Ci
nRi(t)(1−R(t))n−i = 1− (1−R(t))n (3.35)

If R(t) = e−λ t , then k-out-of-n reliability can be written as:

Rk/n(t) =
n

∑
i=k

Ci
ne−iλ t(1− e−λ t)n−i (3.36)

We can also write the MTBF for the k-out-of-n structure:

MT BFk/n(t) =
∫

∞

0
Rk/n(t)dt =

1
λ

n

∑
i=k

1
i

(3.37)
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■ Example 3.6 For our airplane model that tolerates a two-engine failure, if we assume the fault
distribution to be exponential with a constant failure rate λ = 0.00001/hour for each engine, we
can calculate the MTBF of the airplane as:

MT BF2/4(t) =
1
λ

4

∑
i=2

1
i
=

1
λ

(
1
2
+

1
3
+

1
4

)
=

13
12

1
λ

≈ 108333hours (3.38)

■

3.6 Series-Parallel and Parallel-Series Systems

In this section we consider systems which use multiple identical units of a given reliability that can
be linked in groups of series and parallel. We present two ways in which we can link these identical
units: series-parallel and parallel-series configurations. Assuming each unit has a reliability function
R(t) and using series and parallel reliability formulas, we can quickly derive the overall reliability
of the structures presented in Figures 3.10 and 3.11.
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Figure 3.10: Reliability diagram for a k×n series-parallel system with identical units

For the series-parallel structure, we have n identical units in series on each of the k lines. As such,
we can derive the following formula for the series-parallel reliability function RSP(t):

RSP(t) = 1− (1−Rn(t))k (3.39)

In a similar fashion, for the parallel-series structure in Figure 3.11, we have a group of k identical
units in parallel that are connected in series with another group of k-parallel units and so on
repeating n times.

We can derive the following formula for the parallel-series reliability function RPS(t):

RPS(t) =
[
1− (1−R(t))k

]n
(3.40)
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Figure 3.11: Reliability diagram for a k×n parallel-series system with identical units

Having deduced these formulas, we can plot the two reliability functions as in Figure 3.12. It can
be mathematically proven that the reliability of the parallel-series configuration RPS(t) is always
greater than the reliability of the series-parallel configuration RSP(t) for any positive integer values
of n and k.

What this means is that redundancy at the component level is always more effective than redundancy
at the system level in improving system reliability, when using the same number of components.
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Figure 3.12: RSP(t) versus RPS(t) for n=k=3

■ Example 3.7 A solar panel is comprised of nine identical solar cells. Each solar cell can have
two major failure modes:

• fail-open, when the cell or its metallic contacts break due to micro-fissures or bad bonding
• fail-closed, when the cell is shorted

In either of these two states the cell’s energy production is compromised, but, depending on how
the cell is connected to the other cells in the solar panel and the preferred failure mode of the cell, it
could have a larger or smaller effect on the overall reliability of the panel.

Given a single solar cell reliability of R=0.9 at a certain time and a fail-open preferred mode of
failure, what is the best way to wire the nine cells in the solar panel: series-parallel (Figure 3.13) or
parallel-series (Figure 3.14)?
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Figure 3.13: Reliability diagram for a 3×3 series-parallel system with identical units

R R R

R R R
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Figure 3.14: Reliability diagram for a 3×3 parallel-series system with identical units

We can compute the 3×3 series-parallel and parallel-series reliability functions as:

• RSP = 1− (1−0.93)3 = 0.98
• RPS = (1− (1−0.9)3)3 = 0.997.

It is evident that RSP < RPS.

In conclusion, if the preferred failure mode of a solar cell is fail-open, it is more reliable to wire a
solar panel as a parallel-series configuration. ■

3.7 Non-Decomposable Systems
There are systems that can be described by reliability block diagrams that cannot be decomposed
into series or parallel units. An example of such a system is described in Figure 3.15, where the
structure does not lead to any type of equivalence to a series or parallel module configuration.

R1

R2

R3

R4

R5

Figure 3.15: Reliability diagram for a non-decomposable system

We can assess the reliability of this type of system by considering the behaviour of one of its
constituent modules. Let us pick the module with reliability R3 and estimate the reliability of the
system in the following two situations:
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Case 1: module R3 has failed.
In this case, module R3 can be represented as open in the system reliability diagram (reliability =
0), as in Figure 3.16.

We can estimate the reliability of the system in this case as:

RC1 = (R1R4)||(R2R5) = 1− (1−R1R4)(1−R2R5) = R2R5 +R1R4 −R1R4R2R5 (3.41)

R1

R2

R4

R5

Figure 3.16: Equivalent system reliability diagram for module R3 failed

Case 2: module R3 is fully operational.
In this case, module R3 can be represented as connection in the system reliability diagram (reliability
= 1), as in Figure 3.17.

We can also estimate the reliability of the system in this case as:

RC2 = (R1||R2)(R4||R5) = (R1 +R2 −R1R2)(R4 +R5 −R4R5) = (3.42)

= R1R4 +R1R5 −R1R4R5 +R2R4 +R2R5 −R2R4R5 −R1R2R4 −R1R2R5 +R1R2R4R5

R1

R2

R4

R5

Figure 3.17: Equivalent system reliability diagram for module R3 fully operational

The reliability of the system in Figure 3.15 is going to be a sum of probabilities of the two cases:



3.8 Majority Voted Redundancy 47

RS = R3 ×P(system works|3 is without f aults)+(1−R3)×P(system works|3 is f aulty)
(3.43)

= R3RC2 +(1−R3)RC1

= R3(R1R4 +R1R5 −R1R4R5 +R2R4 +R2R5 −R2R4R5 −R1R2R4 −R1R2R5 +R1R2R4R5)

+(1−R3)(R2R5 +R1R4 −R1R4R2R5)

= R1R4 +R2R5 +R1R3R5 +R2R3R4 −R1R3R4R5 −R2R3R4R5 −R1R2R3R4 −R1R2R3R5

−R1R2R4R5 +2R1R2R3R4R5

If R1 = R2 = R3 = R4 = R5 = R, then we can rewrite 3.43 as:

RS = 2R2 +2R3 −5R4 +2R5 (3.44)

3.8 Majority Voted Redundancy
Majority voted redundancy is a fault-tolerant technique used in computing systems to enhance
reliability and protect against component failures. It employs a redundant approach, utilizing
multiple identical copies of a hardware component or software module to execute the same task.
The outputs of these redundant components are then fed into a voting mechanism, which determines
the correct output based on the majority vote.

3.8.1 Triple Modular Redundancy (TMR)
The simplest structure to offer majority voted redundancy is the triple modular scheme in which
three identical components, be it hardware or software, are set to simultaneously execute the same
function and the results at their outputs are compared by a voter, as in Figure 3.18.

R1

R2

R3

RV

Figure 3.18: Triple modular redundancy majority voting system

The majority voting mechanism determines the correct output based on the majority vote. If two or
more components produce the same output, that is considered the correct output. If there is a tie,
the system may enter a fail-safe state or attempt to recompute the output.

TMR provides exceptional fault tolerance, as it can withstand one or, in some instances, two
component failures while still maintaining system operation. The voting mechanism effectively
detects discrepancies among the outputs of the redundant components, enabling error detection and
correction.

TMR is widely used in mission-critical systems where reliability is paramount, such as aircraft
avionics, medical devices, and industrial control systems. Also, TMR is often employed in data
storage systems to protect against data loss due to hardware failures.
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The main limitation of TMR comes from its scale, as it introduces additional hardware or software
overhead, leading to higher system costs.

The total reliability of a TMR system can be inferred from the fact that it needs at least two of its
three modules and its voter to function fault-free in order for the whole system to function properly.
As such, we can write:

R2/3 = [R1R2(1−R3)+R1(1−R2)R3 +(1−R1)R2R3 +R1R2R3]RV (3.45)

Given the three modules are identical, we can assume that R1(t) = R2(t) = R3(t) = R(t). Also, the
voter is far simpler in structure than of any other of the three modules, so we can assume that it can
be much more reliable RV (t)>> R(t), RV (t)≈ 1

Therefore, we can rewrite 3.45 as:

R2/3(t) = 3R2(t)−2R3(t) (3.46)

Given that R(t) = e−λ t , we can plug in to 3.46:

R2/3(t) = 3e−2λ t −2e−3λ t (3.47)

One interesting question is whether this TMR structure is more reliable than a single module. We
can answer this question by solving this simple inequality:

R2/3(t)>R(t)⇒ 3R2(t)−2R3(t)>R(t)⇒ 2R3(t)−3R2(t)+R(t)< 0⇒R(t)(2R2(t)−3R(t)+1)< 0

(3.48)

As R(t)≥ 0 ∀t ≥ 0 as a probability function, then:

2R2(t)−3R(t)+1 < 0 ⇒
(

R(t)− 1
2

)
(R(t)−1)< 0 (3.49)

which is true for R(t)≥ 1
2 .

Therefore, it is advisable to use triple modular redundancy only with modules that operate at an
individual reliability greater than 50%, as in Figure 3.19. We can calculate the elapsed mission time
at which the triple modular redundancy falls below the reliability of a single module t = ln(2)/λ ≈
0.69/λ . In conclusion, TMR can be used for applications that have mission times less than 69% of
MTBF.

We can also calculate the MTBF of a TMR structure as:

MT BF2/3 =
∫

∞

0

(
3e−2λ t −2e−3λ t

)
dt =

3
2λ

− 2
3λ

=
5

6λ
=

5
6

MT BF (3.50)

We can see that MT BF2/3 < MT BF at any time, which says the TMR structure will fail on average
more often than one of its constituent modules.
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Figure 3.19: R2/3(t) versus R(t) for a TMR system

3.8.2 3-out-of-5 Modular Redundancy
We can further replicate the modules in the TMR scheme and build a two out of five majority voting
scheme, as in Figure 3.20.

R1

R2

R3

R4

R5

RV

Figure 3.20: 3/5 majority voting system

Operating under the same assumptions that that R1(t) = R2(t) = R3(t) = R4(t) = R5(t) = R(t) and
RV (t)>> R(t), RV (t)≈ 1, we can deduce the reliability:

R3/5(t) = R5(t)+5(1−R(t))R4(t)+10(1−R(t))2R3(t) = 6R5(t)−15R4(t)+10R3(t) (3.51)

Given that R(t) = e−λ t , we can plug in to 3.51:

R3/5(t) = 6e−5λ t −15e−4λ t +10e−3λ t (3.52)

which is also greater than R(t) i f R(t) ∈ (1
2 ,1]

The MTBF of the structure is:
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MT BF3/5 =
∫

∞

0

(
6e−5λ t −15e−4λ t +10e−3λ t

)
dt =

6
5λ

− 15
4λ

+
10
3λ

=
47

60λ
=

47
60

MT BF (3.53)

Therefore, MT BF3/5 < MT BF2/3 < MT BF .
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Figure 3.21: R3/5(t) and R2/3(t) versus R(t)

3.8.3 n-out-of-[2n-1] Modular Redundancy
Given the previous two examples of majority voting, we can expand to a general case of n out of
2n-1 modular redundancy with voting. This is similar to a k-out-of-n structure, with the particularity
that n must be an odd number, to allow majority voting.

The general formula for majority voting structures reliability becomes:

Rn/2n−1(t) =C2n−1
2n−1R2n−1(t)+C2n−2

2n−1(1−R(t))R2n−2(t)+ ..+Cn
2n−1(1−R(t))n−1Rn(t)

(3.54)

=
2n−1

∑
i=n

Ci
2n−1(1−R(t))2n−1−iRi(t)

If R(t) = e−λ t , we can rewrite 3.54:

Rn/2n−1(t) =
2n−1

∑
i=n

Ci
2n−1(1− e−λ t)2n−1−ie−iλ t (3.55)

It can be mathematically proven that Rn/2n−1(t)> R(t) when R(t)> 0.5, so any majority voting
system can be used for mission times shorter than 0.69 of a single unit MTBF.

The MTBF for the entire structure is generally decreasing with the increase in number of redundant
modules. While this is counter-intuitive, it can be explained by the increasing probability of a
number of redundant modules malfunctioning at any given time.
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MT BFn/2n−1 =
∫

∞

0
Rn/2n−1(t)dt =

1
λ

2n−1

∑
i=n

1
i

(3.56)

It can be proven that, when n increases, MT BFn/2n−1 decreases asymptotically to:

lim
n→∞

MT BFn/2n−1 =
1
λ

lim
n→∞

2n−1

∑
i=n

1
i
=

ln(2)
λ

≈ 0.69MT BF (3.57)

3.9 Standby-Sparing

Standby-sparing is a fault-tolerant technique used to improve the reliability of systems. It involves
having one or more spare components that are inactive until the primary component fails. When
the primary component fails, the spare component is activated and takes over its operation.

There are three types of standby-sparing commonly used in computing:

• Cold Sparing: The spare component is not powered on until the primary component fails.
This is the simplest form of standby sparing but also the least efficient.

• Warm Sparing: The spare component is powered on but not actively participating in the
system operation. This is more efficient than cold sparing but requires additional resource
consumption.

• Hot Sparing: The spare component is fully active and ready to take over operation immedi-
ately upon primary component failure. This is the most efficient form of standby sparing but
also the most complex and expensive.

There are some immediate benefits of standby sparing over the other types of techniques to improve
reliability. It is a structure that offers high reliability, as standby sparing can significantly improve
the reliability of systems by providing multiple paths for system operation. Another benefit
is reduced downtime. When a primary component fails, the standby component can take over
immediately, minimizing downtime and improving system availability.

3.9.1 One Spare Reliability

Figure 3.22 describes a one-spare system. There is a primary module with reliability R1 and a spare
R2. The spare is coupled into operation only when the failure detection module FD detects a failure
of the primary module. Note that the diagram does not implicitly differentiate between cold or
warm sparing.

FD

R1

R2

Figure 3.22: One-spare reliability diagram
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Cold Sparing
We will analyze the system with the assumption that the spare module is not powered until the
primary has completely failed.

As previously stated, we note the reliability of the primary module R1 and the reliability of the
spare R2. The failure detection module is much simpler in structure than either the primary or the
spare, therefore its reliability can be approximated to be RFD = 1.

There can be two cases in which this structure successfully completes its mission:

1. The primary module survives for the entire mission duration
2. The primary module shuts down due to a defect at a certain time and the spare switches on

for the remainder of the mission duration

If we write P1 to be the probability of case one happening and P2 the probability attached to the
second case, then, the reliability of the one-spare structure can be written as R1sp = P1 +P2

P1 is equal to the reliability of the primary, so P1 = R1.

To calculate P2 we need to take into account that there are two events that need to happen: the
primary breaking down at a certain time and the spare switching on at this time and continuing the
mission. Let’s write this moment in time as τ .

The probability of the primary breaking down at time τ is equal to the pdf f (τ), which, by the
relations established in a previous chapter is f (τ) = dF(τ)

dτ
=−dR1(τ)

dτ
. The probability of the spare

switching on at time τ and then continuing to operate until the mission is completed at a certain
time t is R2(t − τ). However, the malfunction of the primary can happen anytime between 0 and
time t, so P2 =

∫ t
0 −

dR1(τ)
dτ

R2(t − τ)dτ

Therefore, we can write the reliability of a one spare system with cold sparing as:

R1sp(t) = P1 +P2 = R1(t)+
∫ t

0
−dR1(τ)

dτ
R2(t − τ)dτ (3.58)

If R1(t) = e−λ1t and R2(t) = e−λ2t , then we can rewrite 3.58 as:

R1sp(t) = e−λ1t +
∫ t

0
λ1e−λ1τe−λ2(t−τ)dτ = e−λ1t +λ1e−λ2t

∫ t

0
e−(λ1−λ2)τdτ (3.59)

= e−λ1t +
λ1

λ2 −λ1
e−λ2t

(
e−(λ1−λ2)t −1

)
=

λ2

λ2 −λ1
e−λ1t − λ1

λ2 −λ1
e−λ2t

We can also calculate the MTBF of this structure as:

MT BF1sp =
∫

∞

0
R1sp(t)dt =

∫
∞

0

(
λ2

λ2 −λ1
e−λ1t − λ1

λ2 −λ1
e−λ2t

)
dt (3.60)

=
λ2

λ2 −λ1

∫
∞

0
e−λ1tdt − λ1

λ2 −λ1

∫
∞

0
e−λ2tdt =

λ2

λ2 −λ1

1
λ1

− λ1

λ2 −λ1

1
λ2

=
1
λ1

+
1
λ2
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Therefore, we can conclude that MT BF1sp = MT BF1 +MT BF2, which means that, on average, a
one-spare system will have a longer lifetime than any one of its two components.

Usually, in one-spare systems, the primary and the spare are similar, if not identical modules (e.g. a
compute core taking over when an identical compute core breaks down, or a memory drive that
backs up a primary drive with the same capacity or specifications). Therefore, we can assume that
R1(t) = R2(t) = eλ t .

We can recalculate 3.59 to take into account we are working with identical modules:

R1sp(t) = e−λ t +
∫ t

0
λe−λτe−λ (t−τ)dτ = e−λ t +λe−λ t

∫ t

0
dτ = e−λ t(1+λ t) (3.61)

Similarly, we can infer the MTBF:

MT BF1sp =
1
λ
+

1
λ

= 2MT BF (3.62)

This shows that the MTBF of a one-spare structure with cold sparing and identical units is twice
the MTBF of a single unit.

Warm Sparing
Now, let us assume that the spare is not completely switched off while the primary is operating.
Therefore, it will also be affected by degradation, but at a much lover rate than normal. We will
note this as a different reliability function for the spare, R2n.

Similar assumptions from the cold sparing case can be applied. The system is considered to be
working if:

• The primary operates without interruption for the entire duration of the mission (P1 = R1(t)).
• The primary breaks down at a certain time τ and the spare takes over, switching from a

standby state into full operation (P2).

The only major difference from cold sparing is for case 2, taking into account that the spare is
in a standby state while the primary is fully operational. We can quantify this new reliability as
P2 =

∫ t
0 −

dR1(τ)
dτ

R2n(τ)R2(t − τ)dτ

Therefore, the reliability of a one-spare system with warm sparing can be written as:

R1sp′(t) = P1 +P2 = R1(t)+
∫ t

0
−dR1(τ)

dτ
R2n(τ)R2(t − τ)dτ (3.63)

If R1(t) = e−λ1t , R2(t) = e−λ2t and R2n(t) = e−λ2nt , then we can rewrite 3.63 as:

R1sp′(t) = e−λ1t +
∫ t

0
λ1e−λ1τe−λ2nτe−λ2(t−τ)dτ = e−λ1t +λ1e−λ2t

∫ t

0
e−(λ1+λ2n−λ2)τdτ (3.64)

= e−λ1t +
λ1

λ1 +λ2n −λ2

(
e−λ2t − e−(λ1+λ2n)t

)
We can also calculate the MTBF of this structure as:
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MT BF1sp′ =
∫

∞

0
R1sp′(t)dt =

1
λ1

+
1
λ2

λ1

λ1 +λ2n
=MT BF1+MT BF2

MT BF2n

MT BF1 +MT BF2n
(3.65)

If the primary and the spare are identical we can assume R1(t) = R2(t) = e−λ t , but the standby
reliability of the spare will still need to be factored in. We can write this as R2n = e−λnt

We can rewrite 3.64 as:

R1sp′(t) = e−λ t +
∫ t

0
λe−λτe−λnτe−λ (t−τ)dτ = e−λ t

[
1+

λ

λn

(
1− e−λnt

)]
(3.66)

MTBF in 3.65 can also be simplified as:

MT BF1sp′ =
1
λ
+

1
λ +λn

(3.67)

From 3.67 we can infer that the MTBF of the warm spare system is lower than one for the cold
spare system, due to the lower MTBF of the spare.

3.9.2 Two Spare Reliability
Next, we will focus on the reliability of a two-spare system. There is a primary module of reliability
R1 = e−λ1t and two spares with reliabilities R2 = e−λ2t and R3 = e−λ3t . We will focus on the cold
sparing case, in which both spares are completely switched off when are not used.

We can estimate the reliability of the structure through two iterations: first considering the reliability
of the [R1,R2] ensemble as a one-spare system R12, and then adding R3 as a spare to it.

FD

R1

R2

FD R3

Figure 3.23: Two-spare reliability diagram

We have previously demonstrated in equation 3.59 that:

R12(t) =
λ2

λ2 −λ1
e−λ1t +

λ1

λ1 −λ2
e−λ2t (3.68)
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Factoring the above into the expression for the total system reliability yields the following expres-
sion:

R2sp = R123(t) = R12(t)+
∫ t

0
−dR12(τ)

dτ
R3(t − τ)dτ (3.69)

After plugging in equation 3.68 in the above expression, we can write:

R2sp(t) =
λ2λ3

(λ2 −λ1)(λ3 −λ1)
e−λ1t +

λ1λ3

(λ1 −λ2)(λ3 −λ2)
e−λ2t +

λ1λ2

(λ1 −λ3)(λ2 −λ3)
e−λ3t (3.70)

From here it can be easily deduced that MTBF of the two spare structure is:

MT BF2sp =
∫

∞

0
R2sp(t)dt (3.71)

=
∫

∞

0

(
λ2λ3

(λ2 −λ1)(λ3 −λ1)
e−λ1t +

λ1λ3

(λ1 −λ2)(λ3 −λ2)
e−λ2t +

λ1λ2

(λ1 −λ3)(λ2 −λ3)
e−λ3t

)
dt

=
λ2λ3

(λ2 −λ1)(λ3 −λ1)

1
λ1

+
λ1λ3

(λ1 −λ2)(λ3 −λ2)

1
λ2

+
λ1λ2

(λ1 −λ3)(λ2 −λ3)

1
λ3

=
1
λ1

+
1
λ2

+
1
λ3

We can rewrite equation 3.71 as:

MT BF2sp = MT BF1 +MT BF2 +MT BF3 (3.72)

If all of the three modules are identical, R1(t) = R2(t) = R3(t) = e−λ t we can rewrite equation 3.69
as:

R2sp = e−λ t(1+λ t)+
∫ t

0
−d(e−λτ(1+λτ))

dτ
e−λτdτ = e−λ t

(
1+λ t +

λ 2t2

2

)
(3.73)

Also,

MT BF2sp =
∫

∞

0
e−λ t

(
1+λ t +

λ 2t2

2

)
dt =

3
λ

= 3MT BF (3.74)

3.9.3 N Spare Reliability
We can generalize the one spare and two spare examples to a system which has any number of
spares.

For ease of calculation, we can make the following assumptions:

• Each spare is identical with the primary unit
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• The entire standby-sparing system is operating with cold spares

The reliability of a system with n such spares can be deduced iteratively and be written as:

Rnsp = e−λ t
(

1+λ t +
λ 2t2

2
+

λ 3t3

6
+ ..+

λ ntn

n!

)
= e−λ t

n

∑
0

λ ntn

n!
(3.75)

Similarly, the MTBF of an n-spare system is:

MT BFnsp =
∫

∞

0
e−λ t

n

∑
0

λ ntn

n!
dt = n

1
λ

= n ·MT BF (3.76)

Infinite Spares
An interesting, albeit purely theoretical case is when the system has an infinite amount of spares,
because the sum ∑

∞
0

λ ntn

n! is the Taylor series of eλ t .

Replacing this into 3.75 for n = ∞ we get:

R∞sp = e−λ t
∞

∑
0

λ ntn

n!
= e−λ teλ t = 1 (3.77)

This is the only example in reliability where a system can achieve 100% reliability. Unfortunately,
it is also an unachievable example.
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