
1

Software
Maintenance

“There is no code so big, twisted, or complex
that maintenance can't make it worse.”

- Gerald M. Weinberg

nAnti-Patterns:
l Informal bug tracking
l Not allocating post-release staffing

– Bad prior release distracts team
l Not paying off technical debt

nCode maintenance during and after development
l You need a process to identify bugs and track to resolution
l Most software is an update, not a clean-slate project
l Ongoing effort is required to repay “technical debt”

Software Maintenance
https://goo.gl/Crc1zq

2

n Map reported issue to an actual bug
l L1/L2/L3 support to capture bug report
l Sorting out duplicate reports takes effort

n Prioritize the bug fix (e.g., risk table)
l Combination of frequency, business cost

n Find someone with right skills to fix it
l Does this derail new development tasks?
l Quick and dirty? Or a solid re-engineer fix?

n Validate the fix
l Did you inject a new fault with the fix?

n Package the fix and deploy it
l Hot patch? Defer to future schedule release?

Managing Bugs

n Risk table example:
l High consequence defect
l With low probability of occurrence
è Medium risk / medium priority bug

3

n Most SW work is on existing code, not a clean slate
l “Clean slate” often works with COTS components

n 60/60 rule [Glass, IEEE Software May 2001]

l Maintenance can average 60% of lifecycle cost
l About 60% of maintenance is adding new features

n Maintenance is harder than development
l Need to understand existing system

– Motivation for keeping entire V document chain up to date
– Optimized code is more painful to maintain

l Need to modify system without breaking things
– Complete rewrite usually impractical – and might be worse

Maintenance Matters Most

https://goo.gl/1CqN9i

4

n Technical debt: messy code/design/architecture that hasn’t been cleaned up
l Some signs of debt:

– Degraded code quality (spaghetti code, globals, warnings, …)
– Skipped process steps (missing peer reviews, unit tests, …)
– High fault reinjection ratio (new bugs when fixing old bugs)

l You incur debt by taking a shortcut
– Short-term debt can be useful (e.g., meet a deadline)

l Repay debt by refactoring the system

n Technical debt incurs interest
l Shortcuts often lead to bugs, fragility
l Accumulated debt becomes unsustainable

n Use the right amount of debt
l It’s like using a credit card responsibly
l Devote part of each development cycle to repaying technical debt

Managing Technical Debt

$

5

$

$

$

https://goo.gl/cFXrD9

nMost development is maintenance
l Plan for and staff maintenance

– Most development is on the next revision
– Plan for high priority emergency fixes

l Keep up with technical debt payments

nMaintenance pitfalls
l Not allocating time for bugs, maintenance & technical debt

– For example, need perhaps 10% budget for technical debt repayment
– Leave slack in deadlines for fixing urgent previous-version bugs

l Evaluating programmers only for clean-sheet development skills

Best Practices for Maintenance

https://goo.gl/DDZfcY

6

7

https://xkcd.com/1172/ https://xkcd.com/1579/

