
1

Integration Testing

“It's hard enough to find an error in your 
code when you're looking for it; it's even 
harder when you've assumed your code is 
error-free.”

– Steve McConnell



YOU ARE HERE
SPECIFY 

PRODUCT

SPECIFY 
SOFTWARE

UNIT 
TEST

SOFTWARE 
TEST

ACCEPTANCE 
TEST

CREATE SW 
ARCHITECTURE

IMPLEMENT

INTEGRATION 
TEST

TRACEABILITY & VALIDATION

DESIGN 
MODULES

Product 
Requirements

Software Requirements

High Level Design

Detailed Design Source Code

Unit Test Results

Integration Test Results

Test Plan & Test Results

Test Plan & Test Results

Test Plan & Test Results

Test 
Plan &

Test 
Results

Software Test 
Results

PRODUCT

2



n Anti-Patterns:
l Skipping straight to system test
l No traceability from integration test 

to High Level Design
l Integration test “pass” criterion based on 

system function, not interfaces

n Testing component integration:
l Exercise all component interfaces

– Correct responses to input sequences?
– Handle all types of data on interfaces?

l Ensure modules match HLD, including SDs
– Assume unit test has vetted each component
– Concentrate on component interactions

Integration Testing

3



4

n Exercise all interfaces
l All inputs result in correct outputs
l Every component interface exercised

– With all relevant values
– With all relevant timing & sequencing

l Use SDs and HLD info drive testing
– Pass/fail: does it match SD?

n Integration test coverage:
l All arcs on all SDs exercised?
l Off-nominal behaviors tested?

– Invalid sequencing and extraneous inputs?
– Extraneous outputs?

Integration Test Approach To SDs

Integration Test IT-1a:
1. Initialize modules
2. Test setup: CoinCount to zero
3. Insert coin (1a)
4. Observe CoinIn(true) (1b)
5. Observe CoinIn(false (1c)
6. Observe mCoinCount == 1 (1d)

1

6

3 4
2

5



n Observe module interactions
l Set up test

– Meet SD preconditions

l Feed input arc(s) to modules
l Observe intermediate arcs
l Observe output arcs
l Find a way to observe documented 

side effects (e.g., final CoinCount)

n Integration test “pass” is
not just based on final output
l Do all the arcs appear in expected sequence?
l Is timing appropriate?

Tracing Integration Tests to SDs

Test Outputs

Test Input

5



n Interfaces often look like “messages”
l Categorical values (enums)
l Data structures
l Network packets

n Integration testing should exercise 
“message” structure
l All types of messages
l Valid and invalid field values
l Timing, exception handling

– e.g., bad checksum, bad sequence number

n HLD will have the message dictionary
l Defines message types, formats, etc.
l Accompanied by a validation test suite

Integration Tests and Messaging

OBDii Parameter ID message dictionary 
(CAN Network Messages)

[https://en.wikipedia.org/wiki/OBD-II_PIDs]

6



n Trace Integration tests to HLD
l Exercise all arcs on every SD
l Cover all modules; all interfaces
l Cover all message types and fields

n Integration test pitfalls
l System testing alone misses system integration edge cases

– Sometimes a misbehaving system appears to work at system test
– Can be difficult to exercise off-nominal SDs at system level

l If you skip HLD, you can’t trace Integration Tests back to design

Integration Test Best Practices

7



8https://goo.gl/pvDMHX CC BY-NC 2.0



n Philip Koopman - CMU

Disclaimer

This lecture contains materials from:


