
1

Unit
Testing

“Quality is free, but only to those who are
willing to pay heavily for it.”

― DeMarco & Lister

2

YOU ARE HERE
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

UNIT
TEST

SOFTWARE
TEST

ACCEPTANCE
TEST

CREATE SW
ARCHITECTURE

IMPLEMENT

INTEGRATION
TEST

TRACEABILITY & VALIDATION

DESIGN
MODULES

Product
Requirements

Software Requirements

High Level Design

Detailed Design Source Code

Unit Test Results

Integration Test Results

Test Plan & Test Results

Test Plan & Test Results

Test Plan & Test Results

Test
Plan &

Test
Results

Software Test
Results

PRODUCT

3

n Anti-Patterns:
l Only system testing
l Testing only “happy paths”
l Forgetting to test “missing” code

n Unit testing
l Test a single subroutine/procedure/method

– Use low level interface (“unit” = “code module”)
l Test both based on structure and on functionality

– White box structural testing + Black box functional testing
l This is the best way to catch boundary-based bugs

– Much easier to find them here than in system testing

Unit Testing

4

n Tests designed based on behavior
l But without knowledge of implementation
l “Functional” or behavioral testing

n Test the what, but not the how
l Example: cruise control black box test

– Test operation at various speeds
– BUT, no way to tell if special cases in code have been tested

l Advantage: can be written only based on requirements or design
l Disadvantage: difficult to exercise all code paths

n Black box Unit Testing
l Tests based on detailed design (statechart, flowchart)

Black Box Testing

https://goo.gl/wJeZ56

5

n Tests designed with knowledge of software implementation
l Often called “structural” testing
l Sometimes: “glass box” or “clear box”

n Idea is to exercise software
knowing how it is written
l Example: cruise control white box test

– Exercise every line of code
» Tests that exercise both paths of every conditional branch statement

– Test operation at every point in control loop lookup table

l Advantage: helps getting high structural code coverage
l Disadvantage: doesn’t prompt coverage of “missing” code

– E.g., missing special case, missing exception handler

White Box Testing

6

Coverage is a metric for how thorough testing is
n Function coverage

l What fraction of functions have been tested?
n Statement coverage

l What fraction of code statements have been tested?
– (Have you executed each line of code at least once?)

n Branch coverage (also Path Coverage)
l Have both true and false branch paths been exercised?
l Includes, e.g., testing the false path for if (x) { … }

n MCDC coverage (next slide)

n Getting to 100% coverage can be tricky
– Error handlers for errors that aren’t supposed to happen
– Dead (unused) code that should be removed from source

Unit Testing Coverage

7

n Modified Condition/Decision Coverage (MC/DC)
l Used by DO-178 for critical aviation software testing
l Exercise all ways to reach all the code

– Each entry and exit point is invoked
– Each decision tries every possible outcome
– Each condition in a decision generates all outcomes
– Each condition in a decision is shown to independently

affect the outcome of the decision
l For example:

– A == 3 ; B != 4
– A !=3 ; B == 4
– A !=3 ; B != 4

“if (A == 3 || B == 4)” è you need to test at least
(A causes branch, not masked by B)
(B causes branch, not masked by A)
(Fall-through case)

– A == 3 ; B == 4 is NOT tested because it’s redundant (no new information gained)
l Might need trial & error test creation to generate 100% MCDC coverage

MCDC Coverage

https://www.youtube.com/watch?v=DivaWCNohdw

http://www.youtube.com/watch?v=DivaWCNohdw
http://www.youtube.com/watch?v=DivaWCNohdw
http://www.youtube.com/watch?v=DivaWCNohdw

8

n Boundary tests:
l At borders of behavioral changes
l At borders of min & max values, counter rollover
l Time crossings: hours, days, years, …

n Exceptional values:
l NULL, NaN, Inf, null string, …
l Undefined inputs, invalid inputs
l Unusual events: leap year, DST change, …

n Justify your level of coverage
l Trace to unit design
l Get high code coverage
l Define strategy for boundary & exception coverage

Unit Testing Coverage Strategies

9

n Cunit as an example framework
l Test Suite: set of related test cases
l Test Case: A procedure that runs one or

more executions of a module for purpose of testing
l Assertion: A statement that determines

if a test has passed or failed

n Test case example: (http://cunit.sourceforge.net/doc/writing_tests.html#tests)

int maxi(int i1, int i2)
{ return (i1 > i2) ? i1 : i2; }
…
void test_maxi (void)
{ CU_ASSERT(maxi(0,2) == 2); // this is both a test case + assertion

CU_ASSERT(maxi(0, - 2) == 0);
CU_ASSERT(maxi(2,2) == 2); }

Unit Testing Frameworks

http://cunit.sourceforge.net/doc/introduction.html

http://cunit.sourceforge.net/doc/writing_tests.html
http://cunit.sourceforge.net/doc/introduction.html

10

n Unit Test every module
l Use high coverage combination of white box & black box
l Use a unit testing framework

– Multiple simple tests better than one huge, complex test
l Get good coverage of data values

– Especially, validate all lookup table entries

n Unit Testing Pitfalls
l Creating test cases is a development effort

– Code quality for test cases matters; test cases can have bugs!
l Difficult to test code can lead to dysfunctional “unit test” strategies

– Breakpoint debugging is not an effective unit test strategy
– Using Cunit to test 100K lines of code is not really unit testing

l Pure white box testing is “doomed to succeed” (neglects “missing” code)
l Don’t substitute unit tests for peer reviews and static analysis

Best Practices For Unit Testing

https://goo.gl/SjzaBm

11https://goo.gl/pvDMHX CC BY-NC 2.0

12

n Philip Koopman - CMU

Disclaimer

This lecture contains materials from:

