Software Architecture &
High Level Design

All the really important mistakes are

made the first day.

— Eberhardt Rechtin,
System Architecting

SPECIFY
PRODUCT

Product
Requirements

YOU ARE HERE

TRACEABILITY# VALIDATION

SPECIFY
SOFTWAR

Software Requiremeifts

ARCHITECTURE

CREATE SW

High Level Design x

% Test Results

ACCEPTANCE

TEST

—}PRODUCT

Software Test
Results

SOFTWARE
TEST

ﬂ Integration Test Results

INTEGRATION

Detailed Design X

Test
Plan & UNIT
(........
Test TEST
Results

IMPLEMENT

Architecture & High Level Design (HLD)

m Anti-Patterns: Navigator
e Skipping from requirements to code

e No picture that shows how all the
components fit together
e “Wedding cake” layer diagram that Java Virtual Machine (CDC)
omits interface information system software (operating system, drivers)
hardware (CPU, MPEG2-decoder, remote control)
® Elements of High Level Design

e Architecture: boxes, arrows, interfaces
— Arrows/interfaces show communication paths between components
— Recursive: one designer’s system is another designer's component

e High Level Design (HLD) = architecture (nouns) + requirements (verbs)
— Sequence Diagrams (SDs) show interactions

Architecture: Boxes and Arrows

m Software architecture w s SO0
. o A
shows the big picture RCS Node ——
e Boxes: software modules/objects s mave VI T Nom, | 1015 e
. v\\z\nrs gg ﬂ_;é/" '!;,q—'—_i’,_——’,
e Arrows: interfaces -2 s il AN .
e Box and arrow semantics well-defined e @\‘\ :
- Meaning of box/arrow depends on goal V\‘“
e Components all on a single page R T R ous

— Nesting of diagrams is OK

® Many different architecture diagrams are possible, such as:
e Software architecture (components and data flow types)
e Hardware architecture with software allocation
e Controls architecture showing hierarchical control
e Call graph showing run-time hierarchy

https://goo.gl/WnciF3

Sequence Diagram as HLD Notation

® SD construction: OBJECT OBJECT OBJECT
e Each object has a time —— f ——
column extending downward (PrecondltlonD (Precondltlon>
e Arcs are interactions —— Event #L>5 W
between objects E E :
—Event #3

®m Each SD shows a scenario
e Top ovals are preconditions
e Middle ovals are side effects
e Bottom ovals are postconditions

Event #4

@ostco:nditiorD @ostoo:nditiorD

< JNIL

®m SD is a partial behavioral description for objects
e Generally, each object participates in multiple SDs; each SD only has some objects
e The set of all SDs forms the HLD for all objects in the system

Example Sequence Diagram

Legend: Blue = physical objects / Black = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects

Sequence Diagram 3A:

Customer CoinReturn CoinOut CoinControl VendControl
T T T

1

1

1 1

1b. mCoihReturn(true) 1

: -

1

I

I

1

I

I

1c. mCoirlReturn(false) 1
= |
|

I

I

I

I

1

1

(PRE: CoinComt==2)

1a. Press Coin Return

. J—

2a. CoinOut{true)

1
1
2b. CoinOut(false) 1
1

CoinCount--

1 2c. mCoinCount(1)
2d. CoinOut{true) I
1
2e. CoinOut{false) 1

1

1 2f. mCoinCount(0)
I

(POST: CoinCount= =0)

18649 Spring 2010
Group 7

Justin Ray/justinr2

I N W W W

g el . o o

Use Cases to Sequence Diagrams

B Use Case diagram — types of interactions
e System has multiple use cases
e Example: Use Case #1: Insert a coin

B Scenario — a specific variant of a use case

e Each use case has one or more scenarios
— Scenario 1.1: insert coin to add money T s, OCENAIO

— Scenario 1.2: insert excess coin (too many inserted) soacor
—_— Scenario 1 .3: . Some other Situation." The soda mac;ﬂnehasoneadditionalcoinforthisvendcvcle.

e Interactions between objects are different for each scenario

Use Cases

coin return

...............

Sequence’ Diagram

® Sequence Diagram — a specific scenario design

| Customer I I Coinln | | CoinControl I | VendControl
e For our purposes each scenario has one sequence diagram
— Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

m Statechart — design that incorporates all scenarios
e One StateChart per object, addressing all scenarios

Combining SDs To Make Statecharts

m For each object in each SD: identify input & output arcs

e Detailed Design: design statechart that accounts for all SD behaviors
N\

i 8 [] [oo ([et \| [veoms
“ButonContal J [ConControl | || VendContol | [Vend | [fendPosttonConte] [.
> c. mButtonfs]rue) q . 20 cooutneg o .
= = Statechart Must Exhibit All Those Behaviors

CoinCount(2)

[l " endl
se) L 3 a. M

: -
%

i,
3. mVendhotor(STOP) VendM
i i 1stans

-

2¢. comOut(fdse)

7. maoi

CoinControl Statechart: State 53.7 VEND
18649 Spring 2010
Do: Group 7
Set CoinOut to False. Justin Ray/juscinr2
Set CoinCount to 0.
Set mCoinCount to CoinCount.

incount(0)

4b. mVenditrue)
»

»
(conCount=0 \
4. mCoinCount(0)
4c. Soda nded L
State 3.4 OVERPAY
State 3.2 COININ_L State S3.3 COIN_IN_2

State S3.1 IDLE
Do: o Do:
bo: Set CoinOut to True Do: Set CoimOut to Fal Do:
Set CoinOut to True. o True,) 0inOut to False.
Decrement GoinCount. Set CoinOut to False. Ierement ComGount. Set CoinOut to False.

.
false)
g Set mCoinGount to GoinCournt. Set mCoinCount to CoinCount. Set mCoinCount to CoinCount. Set mCoinCount to ColnCount. Set mCoinGount to CoinCount.
[13.5] T T
SD set specifies behaviors e =
State S3.5 RETUR [r3.91 State S3.6 RETURN. 2
Sequence Diagram 1A: r \ Do:
N Do:
- - Set CoinOut to True. .
| Customer | | CoinIn | | CoinControl |'| VendControl Decrement CoinCount. Set "s:eczﬁo&‘m :: CF:.I:E,.,M
Set mCoinCount to CoinCount. 3
CoinCount<2
1a. Coin Inserted
1b. Coinin(true) P State S3.9 RETURN_STRETCH
1c. CoinIn(false) Do:
Set CoinOut to False. [13.13]
Set mCoinCount to CoinCount.
18649 Spring 2010 CoinCount++
Group 7
Justin Ray/justinr2 1d. mCoinCount(CoinCount)

4d. Vend(talse) State S3.8 OVERPAY_STRETCH
L N)

High Level Design Best Practices

® HLD should include: e e ooty T D oram
e One or more architecture diagrams ottt o
— Defines all components & interfaces) e T
— HW arch., SW arch., Network arch., ... e ?‘Eii
e Sequence Diagrams R 1 p—
— Both nominal and off-nominal interactions Comta] 1 = R—
- See 18-649 soda machine for a fully worked example — . e
e HLD must co-evolve with requirements = 1=' 1
— Need both nouns + verbs to define a system! e
" High Level DeSign pitfa"S: https://users.ece.cmu.edu/
e Diagrams that leave out interactions ~koopman/ece649/project/

) . . sodamachine/index.html
e Boxes and arrows don't have well defined meanings

e HLD that bleeds into detailed design information
— Should have separate Detailed Design per component

CAN YOU PASS
THE SALT?

I SAD-
T KNOW! T™ DEVELOPING
A SYSTEM TO PASS YOU
ARBITRARY CONDIMENTS.

ITS BEEN 20)

MINUTES!
J ITLL SAVE TIME
IN THE LONG RUN!

https://xkcd.com/974/

Disclaimer

This lecture contains materials from:

®m Philip Koopman - CMU

