
Software Architecture & 
High Level Design

All the really important mistakes are 
made the first day.

– Eberhardt Rechtin, 
System Architecting



YOU ARE HERE
SPECIFY 

PRODUCT

SPECIFY 
SOFTWARE

UNIT 
TEST

SOFTWARE 
TEST

ACCEPTANCE 
TEST

CREATE SW 
ARCHITECTURE

IMPLEMENT

INTEGRATION 
TEST

TRACEABILITY & VALIDATION

DESIGN 
MODULES

Product 
Requirements

Software Requirements

High Level Design

Detailed Design Source Code

Unit Test Results

Integration Test Results

Test Plan & Test Results

Test Plan & Test Results

Test Plan & Test Results

Test 
Plan &

Test 
Results

Software Test 
Results

PRODUCT



n Anti-Patterns:
l Skipping from requirements to code
l No picture that shows how all the 

components fit together
l “Wedding cake” layer diagram that 

omits interface information

n Elements of High Level Design
l Architecture: boxes, arrows, interfaces

– Arrows/interfaces show communication paths between components
– Recursive: one designer’s system is another designer’s component

l High Level Design (HLD) = architecture (nouns) + requirements (verbs)
– Sequence Diagrams (SDs) show interactions

Architecture & High Level Design (HLD)

https://goo.gl/J8MAuK



n Software architecture
shows the big picture

l Boxes: software modules/objects
l Arrows: interfaces
l Box and arrow semantics well-defined

– Meaning of box/arrow depends on goal
l Components all on a single page

– Nesting of diagrams is OK

n Many different architecture diagrams are possible, such as:
l Software architecture (components and data flow types)
l Hardware architecture with software allocation
l Controls architecture showing hierarchical control
l Call graph showing run-time hierarchy

Architecture: Boxes and Arrows

https://goo.gl/WnciF3



n SD construction:
l Each object has a time 

column extending downward
l Arcs are interactions 

between objects

n Each SD shows a scenario
l Top ovals are preconditions
l Middle ovals are side effects
l Bottom ovals are postconditions

n SD is a partial behavioral description for objects
l Generally, each object participates in multiple SDs; each SD only has some objects
l The set of all SDs forms the HLD for all objects in the system

Sequence Diagram as HLD Notation



Legend: Blue = physical objects / Black = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects

Example Sequence Diagram



n Use Case diagram – types of interactions
l System has multiple use cases
l Example: Use Case #1: Insert a coin

n Scenario – a specific variant of a use case
l Each use case has one or more scenarios

– Scenario 1.1: insert coin to add money
– Scenario 1.2: insert excess coin (too many inserted)
– Scenario 1.3: … some other situation…

l Interactions between objects are different for each scenario
n Sequence Diagram – a specific scenario design

l For our purposes each scenario has one sequence diagram
– Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

n Statechart – design that incorporates all scenarios
l One StateChart per object, addressing all scenarios

Use Cases to Sequence Diagrams
Use Cases

Scenario

Sequence Diagram



Combining SDs To Make Statecharts
n For each object in each SD: identify input & output arcs

l Detailed Design: design statechart that accounts for all SD behaviors

Statechart Must Exhibit All Those Behaviors

…

SD set specifies behaviors



n HLD should include:
l One or more architecture diagrams

– Defines all components & interfaces
– HW arch., SW arch., Network arch., …

l Sequence Diagrams
– Both nominal and off-nominal interactions
– See 18-649 soda machine for a fully worked example

l HLD must co-evolve with requirements
– Need both nouns + verbs to define a system!

n High Level Design pitfalls:
l Diagrams that leave out interactions
l Boxes and arrows don’t have well defined meanings
l HLD that bleeds into detailed design information

– Should have separate Detailed Design per component

High Level Design Best Practices

https://users.ece.cmu.edu/
~koopman/ece649/project/ 
sodamachine/index.html



https://xkcd.com/974/



n Philip Koopman - CMU

Disclaimer

This lecture contains materials from:


