Software Architecture &
High Level Design

All the really important mistakes are

made the first day.

— Eberhardt Rechtin,
System Architecting
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Architecture & High Level Design (HLD)

m Anti-Patterns: Navigator
e Skipping from requirements to code

e No picture that shows how all the
components fit together
e “Wedding cake” layer diagram that  Java Virtual Machine (CDC)
omits interface information system software (operating system, drivers)
hardware (CPU, MPEG2-decoder, remote control)
® Elements of High Level Design

e Architecture: boxes, arrows, interfaces
— Arrows/interfaces show communication paths between components
— Recursive: one designer’s system is another designer's component

e High Level Design (HLD) = architecture (nouns) + requirements (verbs)
— Sequence Diagrams (SDs) show interactions



Architecture: Boxes and Arrows

m Software architecture w s SO0
. o A
shows the big picture RCS Node ——
e Boxes: software modules/objects s mave VI T Nom, | 1015 e
. v\\z\nrs gg ﬂ_;é/" '!;,q—'—_i’,_——’,
e Arrows: interfaces -2 s il AN .
e Box and arrow semantics well-defined e @\‘\ :
- Meaning of box/arrow depends on goal V\‘“
e Components all on a single page R T R ous

— Nesting of diagrams is OK

® Many different architecture diagrams are possible, such as:
e Software architecture (components and data flow types)
e Hardware architecture with software allocation
e Controls architecture showing hierarchical control
e Call graph showing run-time hierarchy

https://goo.gl/WnciF3



Sequence Diagram as HLD Notation

® SD construction: OBJECT OBJECT OBJECT
e Each object has a time —— f ——
column extending downward (PrecondltlonD (Precondltlon>
e Arcs are interactions —— Event #L>5 W
between objects E E :
—Event #3

®m Each SD shows a scenario
e Top ovals are preconditions
e Middle ovals are side effects
e Bottom ovals are postconditions

Event #4

@ostco:nditiorD @ostoo:nditiorD

< JNIL

®m SD is a partial behavioral description for objects
e Generally, each object participates in multiple SDs; each SD only has some objects
e The set of all SDs forms the HLD for all objects in the system



Example Sequence Diagram

Legend: Blue = physical objects / Black = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects

Sequence Diagram 3A:
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Use Cases to Sequence Diagrams

B Use Case diagram — types of interactions
e System has multiple use cases
e Example: Use Case #1: Insert a coin

B Scenario — a specific variant of a use case

e Each use case has one or more scenarios
— Scenario 1.1: insert coin to add money T s, OCENAIO

— Scenario 1.2: insert excess coin (too many inserted) soacor
—_— Scenario 1 .3: . Some other Situation." The soda mac;ﬂnehasoneadditionalcoinforthisvendcvcle.

e Interactions between objects are different for each scenario

Use Cases

coin return

...............

Sequence’ Diagram

® Sequence Diagram — a specific scenario design

| Customer I I Coinln | | CoinControl I | VendControl
e For our purposes each scenario has one sequence diagram
— Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

m Statechart — design that incorporates all scenarios
e One StateChart per object, addressing all scenarios




Combining SDs To Make Statecharts

m For each object in each SD: identify input & output arcs

e Detailed Design: design statechart that accounts for all SD behaviors
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High Level Design Best Practices

® HLD should include: e e ooty T D oram
e One or more architecture diagrams ottt o
— Defines all components & interfaces ) e T
— HW arch., SW arch., Network arch., ... e ?‘Eii
e Sequence Diagrams R 1 p—
— Both nominal and off-nominal interactions Comta] 1 = R—
- See 18-649 soda machine for a fully worked example — . e
e HLD must co-evolve with requirements = 1=' 1
— Need both nouns + verbs to define a system! e
" High Level DeSign pitfa"S: https://users.ece.cmu.edu/
e Diagrams that leave out interactions ~koopman/ece649/project/

) . . sodamachine/index.html
e Boxes and arrows don't have well defined meanings

e HLD that bleeds into detailed design information
— Should have separate Detailed Design per component



CAN YOU PASS
THE SALT?

I SAD-
T KNOW! T™ DEVELOPING
A SYSTEM TO PASS YOU
ARBITRARY CONDIMENTS.

ITS BEEN 20 )

MINUTES!
J ITLL SAVE TIME
IN THE LONG RUN!

https://xkcd.com/974/
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