
Global Variables Are Evil!

“Global variables are responsible for much
undebuggable code, reentrancy problems,
global warming, and male pattern baldness.
Avoid them!”

― JackGanssle

nAnti-Patterns:
l More than a few read/write globals
l Globals shared between tasks/threads
l Variables have larger scope than needed

nGlobal variables are visible everywhere:
l Use of globals indicates poor modularity

– Globals are prone to tricky bugs and race conditions
l Local static variables are best if you need persistence

– File static variables can be OK if used properly
– Don’t make procedures globally visible if not needed

Global Variables AreEvil!

n Globals:
uint32_t gVar = 0;
void gProc(…) { … }

n Global risks
l Written from anywhere

– Debugging: who wrote it?
l Read from anywhere

– Changes break everything
l Multithreaded race conditions
l Increased complexity

– Data flow “spaghetti”

n File Static:
static uint32_t fsVar = 0;
static void fsProc(…) { … }

l Only inside .c file
l Use with small .c files
l Like C++ “private”

n Local Static:
void gProc(…)
{ static uint32_t sVar = 0;
… }

l Persistent variable value
l Can’t be seen outside procedure

Global vs. StaticVariables

https://goo.gl/PhhDcY

nDefine smallest scope possible (variables and procedures)
l Change global to file static; file static to local static

nArrange .c files based on access to data
l Example: time of day updated by ISR

– File static time of day variable in TimeOfDay.c
– Put timer tick ISR in TimeOfDay.c
– Put procedure to disable interrupts & read time of day in TimeOfDay.c

nConfiguration values & constants
l Use const keyword – prevents multiple writers
l Read-only access to global configuration data structure
l Limit visibility to need-to-know within relevant .h file

Avoiding And RemovingGlobals

n Use smallest practical scope for variables & procedures
l Ideally, zero global variables
l Use file static if you must; local static if you can
l A good compiler will generate efficient code

n Reorganize code to reduce scope
l Write anything except locking variables only in one place
l File static variables for small groups of functions

– More or less the idea of C++ private keyword
– Take care of data locking when reading

n Global Variable Pitfalls
l Lots of global variables is a sign of bad code

Best Practices For Avoiding Globals

GLOBALS

https://betterembsw.blogspot.com/2013/09/getting-rid-of-global-variables.html
You have a "globals.c" file that defines a mess of globals, including:

int g_ErrCount;
which might be used to tally the number of run-time errors seen by the system. I've
used a "g_" naming convention to emphasize that is a global, which means that every .c
file in the program can read and write this variable with wild abandon.
Let's say you also have the following places this variable is referenced, including
globals.c just mentioned:
n globals.c:
n globals.h:
n init.c:
n moduleX.c:
n moduleY.c:
n moduleZ.c:

int g_ErrCount; // define the variable
extern int g_ErrCount; // other files include this
g_ErrCount = 0; // init when program starts
g_ErrCount++; // tally another error
XVar = g_ErrCount; // get current number of errors
g_ErrCount = 0; // clear number of reported errors

Example

Create separate “object” for error counting: ErrCount.c
n globals.c: // not needed any more for this variable
n ErrCount.c: int g_ErrCount; // define the variable
n ErrCount.h: extern int g_ErrCount; // other files include this

g_ErrCount = 0; // init when program starts
g_ErrCount++; // tally another error

n init.c:
n moduleX.c:
n moduleY.c:
n moduleZ.c:

XVar = g_ErrCount; // get current number of errors
g_ErrCount = 0; // clear number of reported errors

Create an Error CountingModule

int g_ErrCount = 0; // define and init variable
extern int g_ErrCount; // other files include this
// no longer needed

n ErrCount.c:
n ErrCount.h:
n init.c:
n moduleX.c:
n moduleY.c:
n moduleZ.c:

g_ErrCount++; // tally another error
XVar = g_ErrCount; // get current number of errors
g_ErrCount = 0; // clear number of reported errors

Initialize WhereDefined

n ErrCount.c: static int ErrCount = 0; // only visible in this file
n ErrCount.h: // static variables are invisible outside .c file
n moduleX.c:
n moduleY.c:
n moduleZ.c:

g_ErrCount++; // tally another error
XVar = g_ErrCount; // get current number of errors
g_ErrCount = 0; // clear number of reported errors

Convert to FileStatic

n ErrCount.c: static int ErrCount = 0; // only visible in this file
l

l

l

inline void ErrCount_Incr() { ErrCount++; }
inline int ErrCount_Get() { return(ErrCount); }
inline void ErrCount_Reset() { ErrCount = 0; }

n ErrCount.h:
o inline int ErrCount_Get(); // get current count value
o inline void ErrCount_Reset(); // reset count
o inline void ErrCount_Incr(); // increment the count
// Note that there is NO access to ErrCount directly

n moduleX.c:
n moduleY.c:
n moduleZ.c:

ErrCount_Incr(); // tally another error
XVar = ErrCount_Get(); // get current number of errors
ErrCount_Reset(); // clear number of reported errors

Add Accessor Function

n Software authors can only perform intended functions specific to an error counter: increment,
read, and reset. Setting to an arbitrary value isn't allowed. If you don't want the value changed
other than via incrementing, you can just delete the reset function. This prevents some types of
bugs from ever happening.

n If you need to change the data type or representation of the counter used that all happens
inside ErrCount.c with no effect on the rest of the code. For example, if you find a bug with error
counts overflowing, it is a lot easier to fix that in one place than every place that increments the
counter!

n If you are debugging with a breakpoint debugger it is easier to know when the variable has
been modified, because you can get rid of the "inline" keywords and put a breakpoint in the
access functions. Otherwise, you need watchpoints, which aren't always available.

n If different tasks in a multitasking system need to access the variable, then it is a lot easier to
get the concurrency management right inside a few access functions than to remember to get it
right everywhere the variable is read or written (get it right once, use those functions over and
over). Don't forget to make the variable volatile and disable interrupts when accessing it if
concurrency is an issue.

Advantages of thisApproach

https://xkcd.com/2309/

Embedded Software
Requirements

"In spite of appearances, people seldom know what
they want until you give them what they ask for. "

– Donald Gause and Gerald Weinberg,
Are Your Lights On?

YOU ARE HERE

n Anti-Patterns:
l Requirements aren’t written down
l Requirements incomplete, imprecise
l “Be like last version, except…”

n Requirements
l Requirements faults can defeat a

design before it is even built
l Describe what system does

– Also what it’s not supposed to do
l Precise, testable language

– Each requirement traces to system test

Requirements Overview

n 2005:
$170M
FBI Virtual Case
File project
terminated

n Requirements issues:
l Requirements not defined when

development contract signed
l “We will know it when we see it”
l Repeated requirements changes
l Scope creep (new requirements

added) of 80%

n Precise and minimally constrained
l Describes what system should do, not how it does it
l Uses “shall” to require an action; “should” to state a goal
l If possible has a numeric target instead of qualitative term

– Has tolerance (e.g., 500 msec +/- 10%, “less than X”)

n Traceable & testable
l Each requirement has a unique label (e.g., “R-7.3”)
l Each requirement cleanly traces to an acceptance test
l Requirement satisfaction has a feasible yes/no test

n Supported within context of system
l Supported by rationale or commentary
l Uses consistent terminology
l Any conflicting requirements resolved or prioritized

Characteristics of Good Requirements

U1
U2
U3
U4
U5

R1
R2
R3
R4
R5

T1
T2
T3
T4
T5

n Untraceable (no label)
l System shall shut down when E-STOP is activated.

n Untestable
l R-1.1: System shall never crash

n Imprecise
l R-1.7: The system provides quick feedback to the user.

n No measurement tolerance
l R-2.3: LED shall flash with a period of 500 msec

n Overly complex
l R-7.3: Pressing the red button shall activate Widget X, while

pressing the blue button should cause LED Z to blink instead
of LED Y illuminating steadily, which would be accomplished via the yellow button.

n Describes implementation

Problematic Requirements

l R-8.3: Pressing button W shall cause two 16-bit integer values to be added, then …

Requirements Ambiguity
n A requirements engineer gets a text message:

“On the way home, please pick up one carton of milk.
And if they have eggs, get six.”

n The requirements engineer comes home with:
6 cartons of milk and no eggs.

n Spouse: “Why did you buy six cartons of milk?!”

n Requirements Engineer: “They had eggs.”

Adapted from: www.ganssle.com/jokes.htm.

http://www.ganssle.com/jokes.htm

n Emergent properties (things hard to attribute to one component)
l Performance, real-time deadlines
l Security, Safety, Dependability in general
l Size, Weight and Power consumption (“SWaP”)

– Often handled with an allocation budget across components
l Forbidden behaviors (“shall not do X”)

– Often in context of safety requirements
– “Safety function” is a way to ensure a negative

behavior, but some behaviors are emergent

n Design constraints
l Must meet a particular set of standards
l Must use a particular technology
l System cost, project deadline, project staffing

Extra-Functional Requirements

https://goo.gl/hT3nDU

n Product level requirements:
what the product does

l Example:
“PR6. The clock shall support a user-settable audible alarm.”

l Gives a feature list of what the product actually does
l Can be the interface between marketing and engineering

n Detailed functional/engineering requirements:
how the product actually works

l Example: “R5. Time set buttons shall change the alarm set time.”
l Embedded systems often have detailed requirements tied to operational modes

– “R5. In Alarm Set Mode the time set buttons shall change the alarm set time.”
– “R6. Pressing the “+” time set button shall increase time value by one minute per button

press according to the current set mode.”

Product vs. Engineering Requirements

n Text document with list of requirements
l Works best if domain experts already know reqts.
l Over time, this can converge to OK reqts.

n UML Use Cases
l Different activities performed by actors
l Requirements are scenarios attached

to each use case
n Agile User Stories

l Each story describes a system interaction

n Functional decomposition
l Start with primary system functions
l Make more and more detailed lists of sub-

functions (creates a “functional architecture”)
n Prototyping to elicit requirements

l Customers know it when they see it
l Sometimes a paper mock-up is enough

Requirements Approaches

UMLUse Case Diagram

n Easy Approach to Requirements Syntax (Mavin et al.) e.g.: https://bit.ly/2CQSF37

n [While/Where <precondition>] [when/if <trigger> then]
<system> shall <response>

l Ubiquitous: The touch screen shall have a response time of less than 250 msec.
l State-driven: WHILE an external speaker is connected, the internal speaker shall mute.
l Event-driven: WHEN a card is inserted, the card reader shall verify credentials.
l Optional feature: WHERE a convertible roof is installed, a park/roof motion interlock

function shall be provided.
l Unwanted: IF an invalid value is entered THEN an error message shall be displayed.
l Complex: combinations of the above

n Requirements issues to avoid:
l Ambiguous, vague, complex, omitted, duplicated, wordy, implementation, untestable

Requirements Templates (EARS)

Example Software Requirements

https://goo.gl/qct5tL

n Six C-terms for Good Requirements
l Clear, Concise, Correct,

Coherent, Complete and Confirmable
n Also:

l Deal with extra-functional issues
l Relate requirements to design flow

– Associate with user stories or use cases
– Trace to corresponding test

n Requirements pitfalls
l Avoid unnecessary details and implementation
l If it’s missing from requirements, it won’t get done
l If it’s not testable, you won’t know if it got done

Best Practices for Requirements

https://goo.gl/6H3dxi

https://xkcd.com/2021/

Software Architecture &
High Level Design

All the really important mistakes are
made the first day.

– Eberhardt Rechtin,
System Architecting

YOU ARE HERE
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

UNIT
TEST

SOFTWARE
TEST

ACCEPTANCE
TEST

CREATE SW
ARCHITECTURE

IMPLEMENT

INTEGRATION
TEST

TRACEABILITY & VALIDATION

DESIGN
MODULES

Product
Requirements

Software Requirements

High Level Design

Detailed Design Source Code

Unit Test Results

Integration Test Results

Test Plan & Test Results

Test Plan & Test Results

Test Plan & Test Results

Test
Plan &

Test
Results

Software Test
Results

PRODUCT

n Anti-Patterns:
l Skipping from requirements to code
l No picture that shows how all the

components fit together
l “Wedding cake” layer diagram that

omits interface information

n Elements of High Level Design
l Architecture: boxes, arrows, interfaces

– Arrows/interfaces show communication paths between components
– Recursive: one designer’s system is another designer’s component

l High Level Design (HLD) = architecture (nouns) + requirements (verbs)
– Sequence Diagrams (SDs) show interactions

Architecture & High Level Design (HLD)

https://goo.gl/J8MAuK

n Software architecture
shows the big picture

l Boxes: software modules/objects
l Arrows: interfaces
l Box and arrow semantics well-defined

– Meaning of box/arrow depends on goal
l Components all on a single page

– Nesting of diagrams is OK

n Many different architecture diagrams are possible, such as:
l Software architecture (components and data flow types)
l Hardware architecture with software allocation
l Controls architecture showing hierarchical control
l Call graph showing run-time hierarchy

Architecture: Boxes and Arrows

https://goo.gl/WnciF3

n SD construction:
l Each object has a time

column extending downward
l Arcs are interactions

between objects

n Each SD shows a scenario
l Top ovals are preconditions
l Middle ovals are side effects
l Bottom ovals are postconditions

n SD is a partial behavioral description for objects
l Generally, each object participates in multiple SDs; each SD only has some objects
l The set of all SDs forms the HLD for all objects in the system

Sequence Diagram as HLD Notation

Legend: Blue = physical objects / Black = microcontrollers with software
PRE = precondition / POST = postcondition / other ovals are side effects

Example Sequence Diagram

n Use Case diagram – types of interactions
l System has multiple use cases
l Example: Use Case #1: Insert a coin

n Scenario – a specific variant of a use case
l Each use case has one or more scenarios

– Scenario 1.1: insert coin to add money
– Scenario 1.2: insert excess coin (too many inserted)
– Scenario 1.3: … some other situation…

l Interactions between objects are different for each scenario
n Sequence Diagram – a specific scenario design

l For our purposes each scenario has one sequence diagram
– Sequence diagrams 1.1, 1.2, 1.3 show specific interactions

n Statechart – design that incorporates all scenarios
l One StateChart per object, addressing all scenarios

Use Cases to Sequence Diagrams
Use Cases

Scenario

Sequence Diagram

Combining SDs ToMake Statecharts
n For each object in each SD: identify input & output arcs

l Detailed Design: design statechart that accounts for all SD behaviors

Statechart Must Exhibit All Those Behaviors

…

SD set specifies behaviors

n HLD should include:
l One or more architecture diagrams

– Defines all components & interfaces
– HW arch., SW arch., Network arch., …

l Sequence Diagrams
– Both nominal and off-nominal interactions

l HLD must co-evolve with requirements
– Need both nouns + verbs to define a system!

n High Level Design pitfalls:
l Diagrams that leave out interactions
l Boxes and arrows don’t have well defined meanings
l HLD that bleeds into detailed design information

– Should have separate Detailed Design per component

High Level Design Best Practices

https://users.ece.cmu.edu/
~koopman/ece649/project/
sodamachine/index.html

https://xkcd.com/974/

n Philip Koopman - CMU

Disclaimer

This lecture contains materials from:

