
Software Development
Processes

“Without requirements and design,
programming is the art of adding
bugs to an empty text file.”

― LouisSrygley

There once was a coder so bright,
Whose code was impressively tight,
But for extra reliability,
They asked for code review with civility,
Lest their code end up a spaghetti-like sight!

- ChatGPT 2023

© 2020 Philip Koopman

Coding Is Essentially 0% of Creating Software

http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

n Eficient pentru domenii bine înțelese
l Works best if you don’t make many big

mistakes
– Variations on existing systems
– Expensive to fix things that escape to

test steps

l Any problem encounteredrequires
backtracking
– Note: original waterfall paper had these

backward arrows! It was never just a
unidirectional process

Old-School Waterfall DevelopmentCycle
SPECIFY

PRODUCT

SPECIFY
SOFTWARE

CREATE SW
ARCHITECTURE

DESIGN
MODULES

TEST &
VALIDATE

DEPLOY &
MAINTAIN

IMPLEMENT

Product
Requirements

Software
Requirements

High Level
Design

Detailed
Design

Source
Code

Production
System

Bugs

Bugs

Bugs

Bugs

Bugs

Bugs

nDividing up into subsystems is critical
l Bad architecture will doom a project

n Process formality is a good investment
l Traceability, formal reviews, etc.
l Skipping steps costs more in the end

nRequirements change
l Suggests usingan iterated approach

n Finding bugs early is important
l Traceability from high to lowlevels
l Layered testing
l Peer reviews most cost effective for this

What We’ve Learned in 50+ Years of Software

n If the second
half of the
project is
“debugging”
that must
mean the first
half is
“bugging”

– Jack Ganssle
http://www.ganssle.com/rants/on
testing.htm (paraphrase)

http://www.ganssle.com/rants/on

Finding Bugs Before Product Test
nProduct Testing

l Late & Expensive
l Many field escapes

nSoftware Testing
l Unit & Integration test

nCode Peer Review
l Earlier & Cheaper

nDesign Peer Review
l Earlier & Cheaper

FIRST
50%-75%
BUGS FOUND

LAST
5%-10%
BUGS
FOUND

n Emphasizes
traceability
l Supports

subsystem
decomposition

l Peer Reviews of
work products

V(or “Vee”) Development Cycle

n Implementation: the code itself
l Comments describethe implementation; they aren’t the design

nDetailed Design (DD)
l Flowcharts
l Statecharts
l Algorithms, control diagrams, etc.

nHigh Level Design (HLD): architecture, component defs.
l Pieces of the system (e.g., classes, subsystems)
l Functional allocation to thepieces
l Interfaces between thesystems

A Design Is Not The Code

https://pixabay.co
m/en/flowchart-
diagram-drawing-
concept-311347/

n SoftwareRequirements Specification (SRS)
l Says “what” the software does, not “how” it does it

– If it’s not in the SRS, the software shouldn’t do it
– Avoids details unless mandatory due to marketing reqts.

l Often paired with aHardware Requirements Spec.

n Product Requirements Specification(PRS)
l Market-facing product requirements

– What the system does from a user point of view
l Point of interface between software group and others

– Might just be a feature list
– Might be in form of customer-specified acceptance test

Requirements on Top Left of Vee

If you think
good design is
expensive, you

should look at the
cost of

bad design! https://goo.gl/ZVRH9Y

https://youtu.be/j-zczJXSxnw

n Unit Test: Traces to DD
l Test individual subroutines, procedures,“modules”

n Integration Test: Traces to HLD
l Test module interactions (e.g., sequence diagrams)

n Software Test: Traces to SRS
l Test functionality knowing how software is built

n Acceptance Test: Traces to PRS
l Test customer-facing functionality

n Other activities:
l Software Quality Assurance (SQA): did you follow the steps?
l Peer Reviews: check quality of every step
l Regression Test: test after bug fix to make sure bugs stay dead

Verification &Validation on Right Side of Vee

nOld military developmentsaying:
l Deploy when the paper is heavier than

the system. (Even aircraft carriers!)

nDoes all this mean you need to be
buried in paper? No.
l Paper required to check process health

– Be clever about minimizing paper bulk
– But if code has no paperwork, throw the code out

l Put things on paper as you go through the Vee
– “Documentation” after writing code is really inefficient
– If you aren’t going to maintain paper, throw it out

How Much “Paper” Is Enough?

Review: How Do the Pieces Fit Together?

Agile Methods
n Agile generallyvalues:

l Individuals and Interactions over processes and tools
l Working Software over comprehensive documentation
l Customer Collaboration over contract negotiation
l Responding to Change over following a plan

n Example: Scrum
l Daily “stand up” (“scrum”) meetingsfor face-to-face

collaboration
l 2-4 week long sprints to incrementally add functionality

– Each sprint implements items from a backlog
– Demo at end of sprint; theoretically a shippable product

l User stories serve as requirements
l Scrum challenges

– Geographically split teams with informalcommunication

– External dependencies (e.g., other parts of system change)
– No time for extensive testing, especially embedded hardware

http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

© 2020 Philip Koopman 14

Please watch this video:
https://youtu.be/9TycLR0TqFA

https://youtu.be/9TycLR0TqFA

https://goo.gl/CkrCzR

Scrum ProcessExample
n Heavy on implicit knowledge

l Where are the: requirements, design, test plan, acceptance test

nAgile:
l Small teams; small products
l “Everyday” software quality
l Fast requirements change
l High-skill experts throughout

project
– Including life-cycle

maintenance
l Developers can handle being

empowered; usually senior

n Plan-Driven (waterfall;V)
l Large teams; largeproducts
l Mission-critical products
l Stable requirements
l High skill primarily indesign

phase
– Major versions require expert

design
l Most developers are not

empowered; usually junior

When Is Agile a Good Fit?
Source: Boehm & Turner 2004, Balancing Agility and Discipline

n Significant benefit is that itmakes (good) developers happier
l If done well can help with evolving requirements

l But, but you need to manage and moderate the risks

n Issue: “Agile” is not just cowboy coding
l Undefined, undisciplined processes are bad news

l Yes, Agile teams should follow a rigorously defined process

n Issue: “No-paper”Agile unsuitable for long-lived systems
l Implicit knowledge is efficient, but evaporates with the team
l 10+ year old undocumented legacy systems are a nightmare

n Issue: Agile assumes 100% automated acceptance test
l 100% automated system test is often impractical for physical interfaces
l Often implicitly assumes that defect escapes are low cost because a new version is 2-4 weeks away

n Issue: Agile typically doesn’t have independent process monitoring (SQA)
l Software Quality Assurance (SQA) tells you if your process is working

l Agile teams may be dysfunctional and have no idea this is happening
– Or they may be fine – but who knows if they are really healthy or not?

Agile Methods + Embedded (?)

n Follow a defined process
l Must include all aspects shown on Vee

– And SQA, PeerReviews

l It’s OK to rename and reorganize steps
– All the stepshave to get done
– Common to see “AgileFall” etc.
– Also common to see bad process

dressed up with the latest buzzwords

n Software Process Pitfalls
l Skipping steps to get to testing faster means more bugs in test

– Finding bugs is more expensive in testing

l Using the wrong process for the wrong purpose
– 3-Week product life and 30 year product life are different situations

Best Practices For Software Process

https://xkcd.com/844/

n Philip Koopman - CMU

Disclaimer

This lecture contains materials from:

