Software Development
Processes

“Without requirements and design,
programming is the art of adding
bugs to an empty text file.”

— Louis Srygley

There once was a coder so bright,

Whose code was impressively tight,

But for extra reliability,

They asked for code review with civility,

Lest their code end up a spaghetti-like sight!
- ChatGPT 2023

Coding Is Essentially 0% of Creating Software

2013 | Market Study

What percentage of your design time is spent on
each of the following stages?

14%
Developing overall system specs 1ﬁ 1155°/:
. 1 11%
Conceptual design stage _ 111'%
. . 1 30%
Detailed design stage — 22%
1 22%
. q %
Simulation stage 1 8%
| 8%
S #ﬂ -
4 gging -+ : S
prototyping | gy 2 % 2013 (N = 1,928)

6% 12012 (N = 1,535)

Sending to production

Documentation/coding/mtgs 12011 (N = 1,679)

% designwe

April 22-25, 2013

McEnary Canventian Center http://e.ubmelectronics.com/2013EmbeddedStudy/index.html T —

http://e.ubmelectronics.com/2013EmbeddedStudy/index.html

Old-School Waterfall DevelopmentCycle

SPECIFY
PRODUCT

H

Product
Requirements

Bugs |

SPECIFY
SOFTWARE

Software
Requirements

Bugs I

CREATE SW
ARCHITECTURE

High Level
Design

Bugs I

DESIGN
MODULES

Detailed
Design

Bugs l

IMPLEMENT

N

m Eficient pentru domenii bine intelese

e Works best if you don’t make many big
mistakes
- Variations on existingsystems
- Expensive to fix things that escape to

test steps

e Any problem encounteredrequires
backtracking
- Note: original waterfall paper had these

backward arrows! It was never just a
unidirectional process

Source
Code

Bugs l

TEST &
VALIDATE

Bugs l

Production
System

DEPLOY &
MAINTAIN

What We’ve Learned in 50+ Years of Software

® Dividing up into subsystems is critical u If the second

e Bad architecture will doom a project half of the
m Process formality is a good investment ~ Project is
e Traceability, formal reviews, etc. “debugging”
e Skipping steps costs more in the end that must _
B Requirements change mean the first
e Suggests usingan iterated approach half 's_
“bugging”

B Finding bugs early is important
— Jack Ganssle

¢ Traceability from h]gh to lowlevels http://www.ganssle.com/rants/on
° Layered testing testing.htm (paraphrase)
e Peer reviews most cost effective for this

http://www.ganssle.com/rants/on

Finding Bugs Before Product Test

G Design
00 @ | Peer Review
@ Code
Peer Review
\ Software
@ Testing
X Product
FIRST L— Testing
50%-75% .
BugsFouno |_— - ® @ @

LAST
4 5%-10%

o

&

L ® o |Bucs
“SWISS CHEESE” . FOUND

SOFTWARE
FAILURES

® Product Testing
e Late & Expensive
e Many field escapes
m Software Testing
e Unit & Integration test
Hm Code Peer Review
e Earlier & Cheaper
® Design Peer Review
e Earlier & Cheaper

V (or “Vee”) Development Cycle

SPECIFY TRACEABILITY & VALIDATION ACCEPTANCE ’
-- Product
PRODUCT 4 Test Plan & Test Results > TEST
Requi;ﬁg:fst * ’ Software Test Results
SPECIFY 4 .. » SOFTWARE
SOFTWARE Test Plan & Test Results TEST
Software Requirements * ’ Integration Test Results
CREATE SW ‘ > INTEGRATION .
R ARCHITECTURE TEST m Em phas 1ZesS
A Test Plan & .
. . Test Results _ traceability
QQ High Level Design * ’ Unit Test Results
> o ’9 e Supports
DESIGN UNIT subsystem
o <P N
17@ MODULES TEST decomposition
‘I@ Detailed Design * ’ Source Code e Peer Reviews of

AV work products
IMPLEMENT

A Design Is Not The Code

B Implementation: the codeitself
e Comments describe the implementation; they aren’t the design

m Detailed Design (DD) o
e Flowcharts “—4_‘
e Statecharts B
. . |__' rl’?/el’]/ﬂOWChaI.'t-
e Algorithms, control diagrams, etc. i Comee 311347

m High Level Design (HLD): architecture, component defs.
e Pieces of the system (e.g., classes, subsystems)
e Functional allocation to thepieces
e Interfaces between thesystems

Requirements on Top Left of Vee

B SoftwareRequirements Specification (SRS)

e Says “what” the software does, not “how” it does it
- If it’s not in the SRS, the software shouldn’t do it
- Avoids details unless mandatory due to marketing reqts.

e Often paired with aHardware Requirements Spec.

B Product Requirements Specification (PRS)
e Market-facing product requirements
- What the system does from a user point of view
e Point of interface between software group and others

- Might just be a feature list
- Might be in form of customer-specified acceptance test

TN

If you think
good design is
expensive, you

should look at the
cost of

bad design!

https://youtu.be/j-zczJXSxnw

Verification & Validation on Right Side of Vee

®m Unit Test: Traces to DD

e Test individual subroutines, procedures, “modules”
B Integration Test: Traces to HLD

e Test module interactions (e.g., sequence diagrams)
m Software Test: Traces to SRS

e Test functionality knowing how software is built . :
B Acceptance Test: Traces to PRS sy hink o shouilbe mers e here e wes

e Test customer-facing functionality From What's o ey about Seience? by Siiney et (1570
m Other activities:

e Software Quality Assurance (SQA): did you follow the steps?

e Peer Reviews: check quality of every step

e Regression Test: test after bug fix to make sure bugs stay dead

E .4%- ms ‘)- "
o* r

i EAN

How Much “Paper” Is Enough?

® Old military developmentsaying:

e Deploy when the paper is heavier than
the system. (Even aircraft carriers!)

® Does all this mean you need to be

buried in paper? No.

e Paper required to check process health
- Be clever about minimizing paper bulk
- But if code has no paperwork, throw the code out

e Put things on paper as you go through the Vee
- “Documentation” after writing code is really inefficient
- If you aren’t going to maintain paper, throw it out

Review: How Do the Pieces Fit Together?

SPECIFY
PRODUCT

Product
Requirements

(N

e
High Level Design
. 2"

SPECIFY
SOFTWARE <

Software Requirements *

£
..

4
S,
&
N

CREATE SW

ARCHITECTURE Test Plan &

Test Results

P TRACEABILITY.S VALIDATION s »

ACCEPTANCE
TEST

+Product

’ Software Test Results

SOFTWARE
............. » TEST

’ Integration Test Results

INTEGRATION
TEST

’ Unit Test Results

DESIGN
MODULES <P

UNIT
TEST

Detailed Design * ﬂ Source Code

IMPLEMENT

Principles behind the Agile Manifesto

We follow these principles:

Our highest priority is to satisfy the customer
through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in
development. Agile processes harness change for
the customer's competitive advantage.

Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter timescale.

Business people and developers must work
together daily throughout the project.

Build projects around motivated individuals.
Give them the environment and support they need,
and trust them to get the job done.

The most efficient and effective method of
conveying information to and within a development
team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development.
The sponsors, developers, and users should be able
to maintain a constant pace indefinitely.

Continuous attention to technical excellence
and good design enhances agility.

Simplicity--the art of maximizing the amount
of work not done--is essential.

The best architectures, requirements, and designs
emerge from self-organizing teams.

At regular mtervals, the team reflects on how
to become more eftective, then tunes and adjusts
its behavior accordingly.

Agile Methods

m Agile generallyvalues:

Individuals and Interactions over processes and tools
Working Software over comprehensive documentation
Customer Collaboration over contract negotiation
Responding to Change over following a plan

m Example: Scrum

Daily “stand up” (“scrum”) meetingsfor face-to-face
collaboration

2-4 week long sprints to incrementally add functionality
- Each sprint implements items from a backlog

- Demo at end of sprint; theoretically a shippable product

User stories serve as requirements

Scrum challenges

- Geographically split teams with informalcommunication

- External dependencies (e.g., other parts of system change)

- No time for extensive testing, especially embedded hardware

http://agilemanifesto.org/principles.html

http://agilemanifesto.org/principles.html

Introduction to Scrum

A7 minute training

Please watch this video:
https://youtu.be/9TycLROTqFA

by Steve Stedman

https://youtu.be/9TycLR0TqFA

Scrum Process Example

® Heavy on implicit knowledge
e Where are the: requirements, design, test plan, acceptance test

Stakeholder liaison

4

Product Owner

2

Q@

Product
Backlog

Product
Backlog
Refinement

Daily Scrum

Development Team

=4

_ Team forecasts \\ iterati v’-‘Jf]Sf:‘ e

\, work n:eded i : b ;
BV - ’ Blive 7
b ¢ Dache) Deve! f_,u;J #IT IJ/ 57 Potentially
’ Releasable
Sprint Sprint Increment i
Planning Backlog & ’3 8 g
Topic 1: forecast PBl's - 9 3 3
Topic 2: plan work (e.g. tasks) Sprint g b = Sprint = R 2
Review Retrospective

https://goo.gl/CkrCzR

When Is Agile a Good Fit?

Source: Boehm & Turner 2004, Balancing Agility and Discipline

m Agile: ® Plan-Driven (waterfall; V)

e Small teams; small products e Large teams; large products

e “Everyday” software quality e Mission-critical products

e Fast requirements change e Stable requirements

e High-skill experts throughout e High skill primarily indesign
project phase
- Including life-cycle - Major versions require expert

maintenance design
e Developers can handle being e Most developers are not

empowered; usually senior empowered; usually junior

Agile Methods + Embedded (?)

m Significant benefit is that it makes (good) developers happier
e If done well can help with evolving requirements
e But, but you need to manage and moderate the risks
m [ssue: “Agile” is not just cowboy coding
e Undefined, undisciplined processes are bad news
e Yes, Agile teams should follow a rigorously defined process
m [ssue: “No-paper” Agile unsuitable for long-lived systems
e Implicit knowledge is efficient, but evaporates with the team
e 10+ year old undocumented legacy systems are a nightmare
m [ssue: Agile assumes 100% automated acceptance test
e 100% automated system test is often impractical for physical interfaces
e Often implicitly assumes that defect escapes are low cost because a new version is 2-4 weeks away
m [ssue: Agile typically doesn’t have independent process monitoring (SQA)
e Software Quality Assurance (SQA) tells you if your process is working

e Agile teams may be dysfunctional and have no idea this is happening
Or they may be fine - but who knows if they are really healthy or not?

Best Practices For Software Process

®m Follow a defined process o= = 32

e =y

e Must include all aspects shown on Vee
- And SQA, PeerReviews

e |t’s OK to rename and reorganize steps
- All the stepshave to get done
- Common to see “AgileFall” etc.

- Also common to see bad process
dressed up with the latest buzzwords

m Software Process Pitfalls
e Skipping steps to get to testing faster means more bugs in test
- Finding bugs is more expensive in testing
e Using the wrong process for the wrong purpose
- 3-Week product life and 30 year product life are different situations

HOW TO WRITE GOOD CODE:

Do
THINGS
RIGHT OR DO
JHEM FAST?

FAST _[CODE
FAST

DoES NO
IT WORK
CODE YET?
WELL ,
ALMOST, BUT IT5
BECOME A MASS
ARE OF KLUDGES AND
You DoneSNO SPAGHETT] CODE.
YEr?
NO, AND THE
REQUIREMENTS
HAVE CHANGED. .
¢
~ [THROW ITALLOUT) S
| AND START OVER.
GooD
CODE.

https://xkcd.com/844/

Disclaimer

This lecture contains materials from:

®m Philip Koopman - CMU

