
Test Curs 9

● Ce operaţie se face în cadrul rutinei de tratare pentru o
întrerupere de pachet trimis?

● Care este numărul minim de paşi necesar pentru a ruta o adresă
IPv4 prin ruta default, dacă adresa nu este în cache-ul de rute şi
avem cel puţin o rută pentru fiecare din măştile de reaţea
posibile ?

● Ce operaţie skb se foloseşte în procesul de încapsulare al unui
pachet? Dar pentru decapsulare?

Cursul 10

10
Linux kernel library

6 mai 2010

Linux kernel library

● Initially started

– As a revival of the WinVFS project but in such a way that we could keep
up with the Linux change rate

– To test a new idea: FTP server as a portable way of offering access to
Linux filesystems

● Ended up

– An infrastructure which allows one to reuse generic Linux kernel code

● Related areas

– UML

– CoLinux

– FuSE, Ndiswrapper

– Paravirtualization

WinVFS

● Create an Windows ext2 driver as well drivers for other Linux
filesystems (reiserfs)

● Completely reuse Linux filesystem drivers: just recompile the
driver source code

● WinVFS = the infrastructure needed for complete code
reutilization

WinVFS architecture

Generic Windows filesystem driver

Linux VFS and block device adaptation layer

Filesystem drivers (ported from Linux)

EXT2 VFAT MINIX PITIX

WinVFS generic driver

I/O Manager

User space

Kernel space

Proof of concept results

● Generic filesystem driver:

– Read-only support only

● Adaptation layers:

– partial porting, partial reimplementation of the VFS primitives needed by
drivers

– A lot of the generic Linux code was pulled in because of VFS
dependencies on various subsystems

● Drivers ported: ext2, minix, vfat

– Trivial source code modification required (compiler related)

Overview of bits that got pulled in

bitops.h config.h errno.h fd.h init.h minix_fs.h msdos_fs.h quota.h

 slab.h time.h blkdev.h ctype.h ext2_fs.h file.h ioctl.h minix_fs_i.h

 msdos_fs_i.h quotaops.h smp_lock.h types.h blk.h ext2_fs_i.h

 fs.h kdev_t.h minix_fs_sb.h msdos_fs_sb.h rwsem.h spinlock.h

 wait.h byteorder dcache.h ext2_fs_sb.h fs_struct.h kernel.h

 mm.h nls.h rwsem-spinlock.h stat.h capability.h dirent.h

 fat_cvf.h highmem.h list.h module.h pagemap.h sched.h

 stddef.h compiler.h dnotify.h fcntl.h highuid.h locks.h mount.h

 posix_types.h semaphore.h string.h ./mm/page_alloc.c

 ./mm/kmem_cache.c ./mm/filemap.c ./fs/inode.c ./fs/file_table.c

./fs/attr.c ./fs/namespace.c ./fs/bad_inode.c ./fs/dcache.c

 ./fs/namei.c ./fs/buffer.c ./fs/readdir.c ./fs/open.c ./fs/super.c ./fs/block_dev.c

 ./fs/read_write.c ./fs/devices.c ./lib/vsprintf.c ./lib/string.c ./lib/ctype.c

Later developments & decline

● Switched to mingw

● Switched to 2.6 kernel

● TotalCommander plugins

● Security attributes: Linux – Windows adaptation

● We proved it is possible to completely reuse Linux filesystem
drivers code to create Windows drivers

● Switching to 2.6 posed significant challenges

● Keeping track with 2.6 development became impractical

LKL goals

● Allow applications to reuse code from the Linux kernel without
needing to separate, isolate and extract it from Linux

● Run in as diverse environments as possible: cross OS, cross
platforms, both kernel and user

● Allow full Linux subsystem to be reuse (e.g. filesystem drivers,
TCP/IP stack)

● Linux kernel modifications should be isolated (for easy tracking
of Linux kernel development)

● Easy to use (from application point of view)

LKL design decisions

● Make it a library

● The library should contain the full Linux kernel

● Highly customizable – make menuconfig

● Implement it as a new arch port layer

● API based on the Linux system call interface

● Offload some operations to application

● No user / kernel separation or abstractions

Architecture

Interface layer

Linux kernel

Arch port layer

Linux Windows Mac OS X

LKL

Native Operations

Application

Native operations

● Offers services needed by the Linux kernel (e.g. memory
management, thread management, time management, etc.)

● By design, the operations are basic and as generic as possible

● It is the role of the arch port layer to map these operations to
the services required by the Linux kernel

Memory management

● lkl arch is a “non-MMU” arch

● “Physical memory” allocated by the native environment

● Initially: allocate the whole physical memory during initialization

● Later: use native operations to allocate memory

– Hot plug memory

Thread support

● No need for user processes, but...

● We need to support kernel threads

● Micro/internal LKL threading – discarded

● Support from the execution environment

● Put the Linux scheduler in control:

– Each thread has a control semaphore

– Native operations for semaphore control

Threads control – forking

Fork

Create new thread

Lock(Thread2)

Thread1

Thread2

Linux operation

Native operation

Running thread

Stopped thread

Threads control – context switch

Unlock(Thread2) Lock(Thread1)
Thread1

Thread2

Context switch

Linux operation

Native operation

Stopped thread

Running thread

Drivers

● LKL needs drivers to interact with the exterior

– Native part - “the hardware”

– Linux part – a Linux device driver

● How do we communicate between the two parts?

– Linux -> Native: direct function calls

– Native -> Linux: “interrupts”

● Why interrupts?

– The simplest way of running Linux code in the proper context

Examples of drivers

● Disc driver

– “Hardware” = file, partition

– “Hardware” = device object

● Network driver

– “Hardware” = interface

– “Hardware” = socket

● Timer driver

● Console driver

Interrupts

● The application can trigger IRQs

● The Linux kernel will pick it up and run the associated interrupt
handler

● LKL does not support SMP

● We need to serialize the interrupt handler routines with the rest
of the kernel

● Run them from the idle thread

● Whenever the Linux has nothing to do it runs the idle thread

● Waits on a semaphore until an interrupt is generated

Time management

● Essential for proper kernel functioning

– TCP/IP timers

– RCU synchronization

● Supported with two native operations: time and timer

● time() – returns the current time

● timer() – setups a native timer which triggers IRQ_TIMER

● LKL uses NO_HZ

Native operations summary

● void (*print)(const char *str, int len);

● long (*panic_blink)(long time);

● void* (*sem_alloc)(int count);

● void (*sem_free)(void *sem);

● void (*sem_up)(void *sem);

● void (*sem_down)(void *sem);

● void* (*thread_create)(void (*f)
(void*), void *arg);

● void (*thread_exit)(void *thread);

● void* (*thread_id)(void);

● void* (*mem_alloc)(unsigned int);

● void (*mem_free)(void *);

● void (*timer)(unsigned long delta);

● unsigned long long (*time)(void);

● int (*init)(void);

● void (*halt)(void);

Execution environments

Interface layer

Linux kernel

Execution environments

POSIX NT NTK APR

Linux Windows Mac OS X

LKL

Application

Arch port layer

NTK: semaphore operations

static void* sem_alloc(int count)
{
 KSEMAPHORE *sem=ExAllocatePool(PagedPool, sizeof(*sem));
 if (!sem) return NULL;
 KeInitializeSemaphore(sem, count, 100);
 return sem;
}

static void sem_up(void *sem)
{
 KeReleaseSemaphore((KSEMAPHORE*)sem, 0, 1, 0);
}

static void sem_down(void *sem)
{
 KeWaitForSingleObject((KSEMAPHORE*)sem, Executive, KernelMode,
 FALSE, NULL);
}

static void sem_free(void *sem)
{
 ExFreePool(sem);
}

NTK: threads & mem operations

static void* thread_create(void (*fn)(void*), void *arg)
{
 void *thread;
 if (PsCreateSystemThread(&thread, THREAD_ALL_ACCESS, NULL,
 NULL, NULL, (void DDKAPI (*)(void*))fn,
 arg) != STATUS_SUCCESS)
 return NULL;
 return thread;
}

static void thread_exit(void *arg)
{
 PsTerminateSystemThread(0);
}

static void* mem_alloc(unsigned int size)
{
 return ExAllocatePool(NonPagedPool, size);
}

static void mem_free(void *data)
{
 ExFreePool(data);
}

Timer complications

● NT does not have an async notification mechanism

● POSIX does but we can't trigger IRQs from signal handlers

● Timer thread

– POSIX/APR: Poll on pipe

– NT/NTK: wait on an event object

Interface layer

● The application can't call directly the API – Linux functions
needs to run in Linux context

● System calls

– Application triggers IRQ_SYSCALL

– The interrupt handler schedules the system call in a special kernel thread
(ksyscalld)

– Waits on a semaphore for the system call to be finished

● In multi-threaded application only one system call can be
sleeping at a time

● API to create additional syscall kernel threads

Interactions

Application
coreLKL API

Linux kernel Linux drivers

Native driversNative operations

Environment

A
B

C

D
E

F
H

I

G

FTP server for Linux FS access

FTP client FTP client

LKL

APR – LKL conversion layer

APR

Disc image Disc

FTP protocol

Native filesystem

Windows driver for Linux FS

Other neat ideas

● Run Valgrind's memcheck on kernel code

– New SL*B allocator – allows Valgrind to get in the loop

– TODO: page allocator

● „HTTP” client

– Reuses the Linux TCP/IP stack

– Coverage test for Linux's softirq subsystem

– Tested on PPC

– Native:LKL performance 4:1

● LUA-LKL

● Network simulator

Conclusions

● The model allows Linux code reutilization across OS, platforms,
kernel/user spaces

● It allows us to keep up with the Linux change rate

● Implementing a new execution environment is easy

● Using it to develop applications is easy

http://github.com/lkl

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31

