(¥MONITORS: AN<OPERATING SYSTEM
/STRUCTURING CONCEPT

BY

C . A.R. Hoare

STAN-CS-73-401
NOVEMBER 1973

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

Monitors: an operating system
structuring concept

C. A R Hoare
The Queen's University of Belfast

Summar y

Thi s paper devel ops Brinch-Hansen's concept of a nonitor [1, 2, 3]
as a method of structuring an operating system It introduces a form
of synchronization, describes a possible nmethod of inplenmentation in
ternms of semaphores, and gives a suitable proof rule. [Illustrative
exanpl es include a single resource scheduler, a bounded buffer, an alarm
clock, a buffer pool, a disc head optimzer, and a version of the
probl em of readers and witers [4].

This paper is based on an address delivered to IRIA, France. May 11, 1973.

The publication of this paper is supported by the National Science
Foundation under grant nunber G 36473X. Reproduction in whole or in

part is permtted for any purpose of the United States Government.

1. [ntroduction

A primary aimof an operating systemis to share a computer installa-
tion among many prograns making unpredictable demands upon its resources.
A primary task of its designer is therefore to construct resource
allocation (or scheduling) algorithnms for resources of various kinds
(main store, drum store, nmagnetic tape handlers, consoles, etc.). In
order to sinplify his task, he should try to construct separate schedul ers
for each class of resource. Each scheduler will consist of a certain
amount of |ocal admnistrative data, together with some procedures and
functions which are called by programs wishing to acquire and rel ease
resources. Such a collection of associated data and procedures i s known
as a monitor; and a suitable notation can be based on the class notation
of SIMULA67 [6].

nmoni t or name: noni t or

begin . . . declarations of data local to the nonitor;
procedure procname(... formal paraneters . ..).
begin . . . procedure body . . . end;

declarations of other procedures |ocal to the nonitor
initialization of local data of the nonitor
end;

Note that the procedure bodies may have local data, in the normal way.

In order to call a procedure of a monitor, it is necessary to give
the name of the nonitor as well as the name of the desired procedure,
separating them by a dot:

monitorname.procname(. ..actual paraneters...);

In an operating systemit is sonetines desirable to declare severa
monitors with identical structure and behavior, for exanple to schedule
two simlar resources. In such cases, the declaration shown above will
be preceded by the word class, and the separate monitors will be declared
to belong to this class:

monitor 1, nonitor 2: classnane;
Thus the structure of a class of nonitors is identical to that described
for a data representation in [13], except for addition of the basic word
nonitor. Brinch-Hansen uses the word shared for the same purpose [3].

The procedures of a monitor arecomon to all running prograns, in
the sense that any programnay at any time attenpt to call such a
procedure. However, it is essential that only one programat a time
actual Iy succeed in entering a nonitor procedure, and any subsequent
calls must be held up until the previous call has been conpleted.
QGherwise, if two procedure bodies were in sinultaneous execution, the
effects on the local variables of the monitor could be chaotic. The
procedures local to a nonitor should not access any non-1local variables
other than those local to the sane nmonitor, and these variables of the
moni tor shoul d be inaccessible fromoutside the nonitor; if these
restrictions are inposed, it is possible to guarantee against certain
of the obscurer forms of tine dependent coding error; and this guarantee
could be underwritten by a visual scan of the text of the program which
could readily be. automated in a conpiler.

Any dynam c resource allocator will sometines need to delay a program
whi ch wishes to acquire a resource which is not currently available, and
to resune that program after some other program has rel eased the resource
required. W therefore need a "wait" operation, issued frominside a
procedure of the nonitor, which causes the calling program to be del ayed;
and a "signal" operation, also issued frominside a procedure of the same
monitor, which causes exactly one of the waiting prograns to be resumed
imediately; if there are no waiting prograns, the signal has no effect.
In order to enable other prograns to release resources during a wait, a
wait operation must relinquish the exclusion which would ot herw se prevent
entry to the releasing procedure. However, a signal operation nust be
followed i mediately by resunption of a waiting program without possibility
of an intervening procedure call fromyet a third program It is only in
this way that a waiting programhas an absolute guarantee that it can
acquire the resource just released by the signalling program w thout any
danger that a third programw || interpose a nonitor entry and seize the
resource instead.

In many cases, there may be nore than one reason for waiting, and
these need to be distinguished by both the waiting and the signalling
operation. W therefore introduce a new type of variable known as a
"condition"; and the witer of a nonitor should declare a variable of type

condition for each reason why a program might have to wait. Then the wait
and signal operations should be preceded by the name of the relevant
condition variable, separated from it by a dot:
condvariable.wait;
condvari abl e. si gnal
Note that a condition "variable" is neither true nor false; indeed,
it does not have any stored value accessible to the program |n practice,
a condition variable will be represented by an (initially enpty) queue of
processes which are currently waiting on the condition; but this queue is
invisible both to waiters and signallers. This design of the condition
vari abl e has been deliberately kept as primtive and rudimentary as
possible, so that it may be inplemented efficiently and used flexibly to
achieve a wide variety of effects. There is a great tenptation to
i ntroduce a nore-conpl ex synchronization primtive, which my be easier
to use for many purposes. W shall resist this tenptation for a while.
As the sinplest exanple of a monitor, we will design a scheduling
algorithm for a single resource, which is dynamcally acquired and
rel eased by an unknown number of custoner processes by calls on
procedur es

procedure acquire;

procedure release;
A variabl e

busy:Boolean f/
determ nes whether or not the resource is in use. If an attenpt is made
to acquire the resource when it is busy, the attenpting program nust be
del ayed by waiting on a variable

nonbusy: condition
which is signalled by the next subsequent release. The initial value of
busy is false. These design decisions lead to the followi ng code for the
noni tor:

* As in PASCAL [15] a variable declaration is of the form
(variabl e identifier):{type);

si ngl e resource:monitor
begi n busy: Bool ean;
nonbusy:condition;
procedure acquire,
begin if busy _then nonbusy .wait;
busy :=true
end,
procedure rel ease;
begi n busy: =fal se;
nonbusy.signal
end,
busy :=false; coment initial value;
end single resource.

Not es
(1) In designing a nonitor, it seems natural to design the procedure

headi ngs, the data, the conditions, and the procedure bodies, in
that order. Al subsequent exanples wll be designed in this way.

(2) The acquire procedure does not have to retest that busy has gone
false when it resunes after its wait, since the release procedure
has guaranteed that this is so; and as mentioned before, no other
program can intervene between the signal and the continuation of
exactly one waiting program

(3) If nore than one programis waiting on a condition, we postulate
that the signal operation will reactivate the |ongest waiting program
This gives a sinmple neutral queuing discipline which ensures that
every waiting program will eventually get its turn.

“(4) The single resource nonitor sinulates a Bool ean semaphore [7] with
acquire and release used for P and V respectively. This is a
sinple proof that the monitor/condition concepts are not in principle
| ess powerful than semaphores, and can be used for all the same
pur poses.

2. Interpretation

Havi ng proved that semaphores can be inplenmented by a nonitor, the
next task is to prove that monitors can be inplemented by semaphores.

Qovi ously, we shall require for each nonitor a Bool ean semaphore
"mutex", to ensure that the bodies of the local procedures exclude each
other. The semaphore is initialized to 1 ; a P(nutex) nmust be executed
on entry to each local procedure, and a V(mutex) must usually be

executed on exit from it.

Wien a process signals a condition on which another process is waiting
the signalling process nust wait until the resumed process permts it to
proceed. W therefore introduce for each nonitor a second semaphore
"urgent” (initialized to 0), on which signalling processes suspend
thenmsel ves by the operation P(urgent) . Before releasing exclusion,
each process nust. test whether any other process is waiting on urgent |,
and if so, nust release it instead by a \(urgent) instruction. W
therefore need to count the nunber of processes waiting on urgent , in
an integer "urgentcount” (initially zero). Thus each exit froma procedure
of a monitor should be coded:

if urgentcount > 0 then V(urgent) el se V(mutex) .

Finally, for each condition local to the nonitor, we introduce a
semaphore "condsem" (initialized to O), on which a process desiring to
wait suspends itself by a P(condsen) operation. Since a process
signalling this condition needs to know whether anybody is waiting, we
al so need a count of the nunber of waiting processes held in an integer
variabl e "condcount™ (initially O). The operation "cond.wait" may now
be inplenented as follows (recall that a waiting program nust release
exclusion before suspending itself):

condcount :=condcount + 1;
i f urgentcount > 0 then V(urgent) else V(nutex)
P(condsem ;
condcount :=condcount - 1.
The signal operation nmay be coded
urgentcount :=urgentcount + 1;
i f condcount > 0 then {V(condsem); P(urgent)};
urgentcount :=urgentcount-1

In this inplenentation, possession of the nonitor is regarded as a
privilege which is explicitly passed from one process to another. Only
when no-one further wants the privilege is mutex finally rel eased.

This solution is not intended to correspond to recommended "style"
in the use of semaphores. The concept' of a condition-variable is
intended as a substitute for semaphores, and has its own style of usage,
in the same way that while-loops or co-routines are intended as a substi -
tute for jumps.

In many cases, the generality of this solution is unnecessary, and
a significant inprovenent in efficiency is possible:

(1) Wien a procedure body in a nmonitor contains no wait or signal,
exit fromthe body can be coded by a sinple V(nmutex) , since
urgentcount cannot have changed during the execution of the body.

(2) If a Ebnd.signa.l is the last operation of a procedure body, it
can be conbined with nonitor exit as follows:
if condcount > 0 then V(consem
else if urgentcount > 0 then V(urgent)
el se V(nutex).

(3) If there is no other wait or signal in the procedure body, the
second |ine shown above can also be omtted.

(4 If every signal occurs as the |ast operation of its procedure
body, the variables urgentcount and urgent can be omitted, together
with all operations upon them This is such a sinplification that
0-J. Dahl suggests that signals should always be the l|ast operation of a
nmonitor procedure; in fact this restriction is a very natural one, which
has been unwittingly observed in all exanples of this paper.

Significant inprovements in efficiency may al so be obtained by
avoi ding the use of semaphores, and inplenenting conditions directly in
hardware, or at the |owest and nost uninterruptible |evel of software
(e.g. supervisor node). In this case, the follow ng optimizations are
possi bl e:

(1) wurgentcount and condcount can be abolished, since the fact
that sonmeone is waiting can be established by exam ning the representation
of the semaphore, which cannot change surreptitiously within non-interruptible
node.

(2) Many nonitors are very short and contain no calls to other
monitors. Such nonitors can be executed wholly in non-interruptible
node, using, as it were, the common exclusi on nechani sm provi ded by
hardware. This will often involve less time in non-interruptible node
than the establishnent of separate exclusion for each nonitor

| am grateful to J. Bezivin, J. Horning, and R M McKeag for
assisting in the discovery of this algorithm

3. Proof Rules

The anal ogy between a nonitor and a data representation has been
noted in the introduction. The nutual exclusion on the code of a nonitor
ensures that procedure calls follow each other in tine, just as they do
in sequential progranmng; and the same restrictions are placed on access
to non-local data. These are the reasons why the same proof rules can be
applied to nonitors as to data representations.

As with a data representation, the programer nay associate an
invariant 8§ with the local data of a monitor to describe some condition
which will be true of this data before and after every procedure call
S must also be nade true after initialization of the data, and before
every wait instruction; otherwise the next follow ng procedure call wll
not find the local data in a state which it expects

Wth each condition variable b the programmer may associate an
assertion B which describes the condition under which a program waiting
on b wishes to be resumed. As nentioned above, a waiting program nust
ensure that the invariant § for the monitor is true beforehand. This
gives the proof rule for waits

S {b.wait} S&B.
Since a signal can cause imediate resunption of a waiting program the
conditions $&B which are expected by that program nust be nade true
before the signal; and since B nay be made fal se again by the resuned
program only § may be assuned true afterwards. Thus the proof rule
for a signal is:

&B{b.signally.
This exhibits a pleasing symretry with the rule for waiting

The introduction of condition variables makes it possible to wite
nmonitors subject to the risk of deadly enbrace [7]. 1t isthe responsibility
of the programmer to avoid this risk, together with other scheduling
disasters (thrashing, indefinitely repeated overtaking, etc. [Il]). Assertion-
oriented proof methods cannot prove absence of such risks; perhaps it is
better to use less formal nethods for such proofs

Finally, in many cases an operating system nonitor constructs some
"virtual" resource which is used in place of actual resources by its
“customer” programs. This virtual resource is an abstraction fromthe
set of local variables of the monitor. The program prover should therefore
define this abstraction in terms of its concrete representation, and then
express the intended effect of each of the procedure bodies in terns of
the abstraction. This proof nmethod is described in detail in [13].

4. Exanple: Bounded Buffer

A bounded buffer is a concrete representation of the abstract idea
of a sequence of portions. The sequence is accessible to two prograns
running in parallel; the first of these (the producer) updates the sequence
by appending a new portion x at the end, and the second (the consuner)
updates it by removing the first portion. The initial value of the
sequence is enpty. W thus require two operations

(1) append (x:portion);

whi ch shoul d be equivalent to the abstract operation

sequence := sequence " (x);
where (x) is the sequence whose only itemis x and denotes
concatenation of two sequences.

(2) remove(result X:portion);

whi ch shoul d be equivalent to the abstract operations

x :=first(sequence); sequence :=rest(sequence);
where first selects the first itemof a sequence and rest denotes the
sequence with its first itemremved. Cbviously, if the sequence is enpty,
first is undefined; and in this case we want to ensure that the consuner
waits until the producer has made the sequence nonenpty.

W shall assume that the anount of tine taken to produce a portion
or consune it is very large in conmparison with the tine taken to append
or remove it fromthe sequence. W may therefore be justified in making
a design in which producer and consuner can both update the sequence, but
not sinultaneously. |

The sequence is represented by an array

buffer : array 0..N-1 of portion;
and two variabl es:

(1) lastpointer:0..N-1;

whi ch points to the buffer position into which the next append operation
will put a newitem and

(2) count:0..N;

whi ch al ways holds the | ength of the sequence (initially 0).
VW define the function
seq(b,f,c) =qp if ¢ = 0 then enpty
el se seq(b,161,c-1)"(b{2e1])
where the circled operations are taken nodulo N. Note that if ¢ #0,
first(seq(b,f,c)) = bllec]
and
rest(seq(b, £,c)) = seq(b,f,c-1) .
The definition of the abstract sequence in terns of its concrete
representation may now be given:
sequence = seq(buffer, lastpointer,count) .
Less formally, this may be witten
sequence = (buffer[lastpointer & count],
buffer|lastpointer @count ®11],

I.Julf'%er[lastpointere1])
Anot her way of conveying this information would be by an exanple and a
pi cture, which would be even less formal.
The invariant for the nonitor is:
0 < count <N & 0 < lastpointer_<NI
There are two reasons for waiting, which nust be represented by
condition variables.

10

nonempty:conditions
means that the count > 0 , and
nonfull:condition;
means that the count <N .
Wth this constructive approach to the design [8], it is relatively
easy to code the monitor wthout error.

bounded buffer: monitor
begin buffer:array 0..N-1 of portion;
lastpointer:0..N-1;
count:0..N;
nonempty,nonfull:condition;

procedur e append(x:portion);

begin if count =N then nonfull.wait;
note 0 < count < N,
buffer[lastpointer] :=x;
| ast poi nter :=lastpointer »1;
count :=count+l;
nonempty.signal

end append,;

procedure remove(result X:portion);

begin if count =0 then nonempty.wait;
note 0 < count <N
X :=buffer[lastpointer ®count];
C ount :=count-1;
nonfull.signal

end renove;

count :=0Q lastpointer :=0
end bounded buffer;

A formal proof of the correctness of this nonitor with respect to
the stated abstraction and invariant can be given if desired by techniques
described in [13]. However, these techniques seem not capable of dealing
with subsequent exanples of this paper.

Single-buffered input and output may be regarded as a special case
of the bounded buffer with N=1 . |n this case, the array can be
replaced by a single variable, the lastpointer s redundant, and we get:

11

i ostream nonitor
begin buffer:portion;

count:0..1;
nonempty,nonfull:condition;

procedur e append(x:portion);

begin if count =1 then nonfull.wait;
uffer :=x;
count :=1;
nonenpty. si gna
end append;

procedure remove(result X:portion);

begin if count=0 then nonenpty.wait;
x . =buffer
count :=o;
nonfull.signal

end renove

count : =0

end iostream;

If physical output is carried out by a separate special purpose
channel, then the interrupt fromthe channel should sinulate a call of
lostream.remove(x); and simlarly, physical input, sinulating a call of

iostream.append(x) .

5. Scheduled Waits
Up to this point, we have assuned that when more than one programis
waiting for the same condition, a signal will cause the longest waiting

programto be resumed. This is a very good sinple scheduling strategy
whi ch precludes indefinite overtaking of a waiting process

However, in the design of an operating system there are many cases
when such sinple scheduling on the basis of first-cone -first-served is

not adequate. In order to give a closer control over scheduling strategy
we introduce a further feature of a conditional wait, which nmakes it

possible to specify as a parameter of the wait some indication of the
priority of the waiting program e.g.:

busy.wait(p);
Wien the condition is signalled, it is the programthat specified the

| ovest value of p that is resumed. |n using this facility, the designer

12

of a nonitor nust take care to avoid the risk of indefinite overtaking
and often it is advisable to make priority a non-decreasing function of
the time at which the wait comences.
This introduction of a "scheduled wait" concedes to the tenptation
to make the condition concept nmore elaborate. The main justifications are

(1) It has no effect whatsoever on the logic of a program or on
the formal proof rules. Any program which works without a schedul ed wait
will work with it, but possibly with better timng characteristics.

(2) The automatic ordering of the queue of waiting processes is a
sinple fast scheduling technique, except when the queue is exceptionally
long -- and when it is, central processor tine is not the major bottleneck.

(3) The maxi mum anount of storage required is one word per process.
Wthout such a built-in scheduling method, each nmonitor nmay have to
all ocate storage proportionalto the number of its custoners; the alternative
of dynami c storage allocation in small chunks is unattractive at the |ow
| evel of an operating system where nonitors are found

| shall yield to one further tenptation, to introduce a Bool ean

function of conditions:
condname.queue

which yields the value true if anyone is waiting on condname and fal se
otherwise. This can obviously be easily inplenented by a couple of
instructions, and affords valuable information which could otherw se be
obtained only at the expense of extra storage, time, and trouble.

Atrivially sinple exanple of the use of this facility is an alarm-
clock monitor, which enables a calling programto delay itself for a
stated number n of tine-units, or "ticks". There are two entries:

procedure wakeme (n:integer);
procedure tick;

The second of these is invoked by hardware (e.g., an interrupt) at regular
intervals, say ten times per second. Local variables are

now. i nt eger
which records the curreut tine (initially zero) and

wakeup:condition;

13

on which sleeping programs wait. But the alarm setting at which these
prograns will be aroused is known at the time when they start the wait;
and this can be used to determne the correct sequence of waking up.

alarmclock:monitor
begi N now:integer;
wakeup: condi tion;

procedur e wakeme(n:integer);

begi n alarmsetting:integer;
alarmsetting :=now+ n;
whil e now < alammsetting do wakeup.wait(alarmsetting);
wakeup.signal; comment in case the next process is due to
wake up at the same tineg;

end,

procedure tick;

begi N now :=now+ 1;
wakeup.signal
end,

now :=0

end al arncl ock.

In the program given above, the next candidate for wakening is actually
woken at every tick of the clock. This will not matter if the frequency
of ticking is |ow enough, or the overhead of an accepted signal is not too
high. Wen these conditions are not met, the overhead can be easily
reduced to one extra signal per wakening, by introducing an extra variable

nextal arm i nt eger

which holds a copy of the alarnsetting of the next process due to be awoken.
Wien a process is woken up too early, it will nerely reset the nextal arm
and go to sleep again:

1k

alarmclock:monitor

begi n now, nextalarm:integer;
wakeup: condi tion

procedure wakeme (n:integer);
if n>0 then

myalarm:integer;
myalarm : :nOV\H-n;‘
i f nextalarm > myalarm then nextal arm :=myalarm;
whi | e now < myalarm do
begi n wakeup. wai t (nyal arn;
nextalarm :=myalarm
end,
wakeup.signal; conment to allow the next process to set
next al arm

end wakeme;

procedure tick;

begi n now :=now+ 1;
i f now > nextalarm then wakeup.signa
end tick;

now :=0

end al arncl ock;

| amgrateful to A Ballard and J. Horning for posing this problem

6. Further Exanples

In proposing a new feature for a high-level language it is very
difficult to nmake a convincing case that the feature will be both easy to
use efficiently and easy to inplenent efficiently. Quality of inplenen-
tation can be proved by a single good exanple, but ease and efficiency
of use require a great nunber of realistic exanples; otherwise it can
appear that the new feature has been specially designed to suit the

15

exanples, or vice-versa. This section contains a nunber of additiona
exanpl es of solutions of famliar problens. Further examples nay be
found in [14].

6.1 Buffer Allocation

The bounded buffer described in Section 3 was designed to be suitable
only for sequences with small portions, for exanple, message queues. If
the buffers contain high volume information, (for exanple, files for
pseudo-of fline input and output), the bounded buffer may still be used to
store the addresses of the buffers which are being used to hold the
information. In this way, the producer can be filling one buffer while
the consumer is enptying another buffer of the same sequence. But this

requires an allocator for dynamc acquisition and relinqui shment of buffer
addresses. These may be declared as a type
type bufferaddress = 1..B;
where B is the nunmber of buffers available for allocation.
The buffer allocator has two entries:
procedure acquire(result b:bufferaddress);
which delivers a free buffer-address b ; and
procedure release(b: bufferaddress);
which returns a buffer address when it is no longer required. |In order
to keep a record of free buffer addresses, the monitor wll need:
freepool:powerset buf f eraddress;
whi ch uses the PASCAL powerset facility to define a variable whose val ues
range over all sets of buffer addresses, fromthe enpty set to the set
containing all buffer addresses. It should be inplenented as a bitnap
of B consecutive bits, where the i-th bit is 1 if and only if i is
-in the set. There is only one condition variable needed
nonenpty: condi tion
The code for the allocator is:

16

buf fer allocator:monitor

begi n freepool : powerset bufferaddress;
nonenpty: condi ti on;

procedure acquire (result b:buffecaddress);

begin if freepool=enpty then nonempty.wait;
b :=first(freepool); comment any one woul d do;
freepool : = freepool - {b}; comment set subtraction;
end acquire;

procedure release(b: bufferaddress);

begi n freepool :=freepool U {b};
nonempty.signal
end rel ease;

freepool :=all buffer addresses

end buffer allocator.

The action of a producer and consuner nay be sunmmarized:

producer: begin b:bufferaddress;
while not finished do
bufferallocator.acquire(b) ;
. fill buffer b. . . .
bounded buffer.append(b)
end: . . .

end producer;

consuner: begin b:bufferaddress;
while not finished do
begi n bounded buffer.remove(b);
enpty buffer b
buf f er allocator.release(b)
end consuner;

17

This buffer allocator woul d appear to be usable to share the buffers
among several streams, each with its own producer and its own consuner.
Unfortunately, when the streans operate at wi dely varying speeds, and
when the freepool is enpty, the scheduling algorithm can exhibit
persistent undesirable behavior. [f two producers are conpeting for
each buffer as it becones free, a first-came-first-served discipline of
allocation will ensure (apparently fairly) that each gets alternate
buffers, and they wll consequently begin to produce at equal speeds.

But if one consumer is a 1000 lines/min printer and the other is a 10
lines/min tel etype, the faster consumer will be eventually reduced to the
speed of the slower, since it cannot forever go faster than its producer.
At this stage nearly all buffers will belong to the slower stream so the
situation could take a long tinme to clear.

The solution to this is to use a scheduled wait, to ensure that in
heavy | oad conditions the available buffers will be shared reasonably
fairly between the streams that are conpeting for them O course,

i nactive streans need not be considered, and streams for which the consuner
is currently faster than the producer will never ask for more than two
buffers anyway. In order to achieve fairness in allocation, it is
sufficient to allocate a newy freed buffer to that one anmong the
conpeting producers whose stream currently owns fewest buffers. Thus the
system will seek a point as far away from the undesirable extreme as

possi bl e.

For this reason, the entries to the allocator should indicate for
what streamthe buffer is to be (or has been) used, and the allocator
nust keep a count of the current allocation to each streamin an array:

count: array stream of integer,
The new version of the allocator is:

18

buf f eral | ocat or : noni t or

begi n freepool:powerset bufferaddress;
nonempty:condition
count: array stream of integer;
procedure acquire(result b:bufferaddress; s:stream);

begin if freepool =empty then nonempty.wait(count[s]);
count{ S] :=count[s]+1;
b :=first(freepool);
freepool := freepool - {b}

end acquire;

procedure release(b: bufferaddress; s:stream)
begi n count[s] :=count[s]-1,
freepool := freepooll {b};
nonenpty. si gnal
end,

freepool :=all buffer addresses;
for s:stream do count{s] : =0
end bufferallocator.

O course, if a consuner stops altogether, perhaps ow ng to nechanical
failure, the producer must also be halted before it has acquired too nmany
buffers, even if no-one else currently wants them This can perhaps be
most easily acconplished by appropriate fixing of the size of the bounded
buffer for that stream and/or, by ensuring that at |east two buffers are
reserved for each stream even when inactive. |t is an interesting comment
on dynam ¢ resource allocation that as soonas resources are heavily | oaded,
the system nust be designed to fall back towards a nore static reginme.

| amgrateful to E w. Djkstra for pointing out this problem and
it solution [10].

6.2 Disc Head Schedul er
On a noving head disc, the time taken to nove the heads increases

nonotonically with the distance travelled. |f several programs wish to
move the heads, the average waiting tine can be reduced by selecting first

19

t he program which wi shes to nove themthe shortest distance. But
unfortunately this policy is subject to an instability, since a program
wi shing to access a cylinder at one edge of the disc can be indefinitely
overtaken by prograns operating at the other edge or the mddle.

A solution to this is to mnimze the frequency of change of direction
of novenent of the heads. At any tine, the heads are kept noving in a
given direction, and service the program requesting the nearest cylinder
in that direction. [If there is no such request, the direction changes
and the heads make another sweep across the surface of the disc. This
may be called the "elevator" algorithm since it sinulates the behavior
of a lift in a nmulti-story building

There are two entries to a disc head schedul er:

(1) request (dest:cylinder);

wher e

type cylinder = 0..cylmax;
which is entered by a programjust before issuing the instruction to nmove
the heads to cylinder dest.

(2) rel ease;

which is entered by a programwhen it has nmade all the transfers it needs
on the current cylinder.

The | ocal data of the nonitor nust include a record of the current
headpoi sition, the current direction of sweep, and whether the disc is
busy:

headpos: cyl i nder
di rection: (up, down);
busy: Bool ean.

V¢ need two conditions, one for requests waiting for an upsweep and the
other for requests waiting for a downsweep
upsweep, downsweep: condi tion

20

dischead:monitor
begi n headpos: cyl i nder
di rection: (up, down);
busy: Bool ean;
upsweep, downsweep: condi ti on;
procedure request(dest:cylinder);
begin if busy then
{if headpos < dest v headpos = dest & direction = up
then upsweep. wait (dest)
el se downsweep.wait(cylmax - dest)]};
busy :=true; headpos : =dest
end request;

procedure rel ease;
begi n busy :=false;
if direction = up then
{if upsweep. queue then upsweep.signa
el se {direction :=down;

downsweep.signal}}
el se i.f downsweep.queue then downsweep.signal

el se {direction :=up;
upsweep.signal}l
end rel ease;
headpos : =0 direction :=up; busy :=false

end di schead;

.6.3 Readers and Witers

As a nore significant exanple, we take a probl em which arises in
on-line real-time applications such as airspace control. gynnose that
each aircraft is represented by a record; and this record is kept up to
date by a nunber of "writer" processes, and accessed by a nunber of
"reader" processes. Any nunber of "reader" processes may sinultaneously
access the sane record, but obviously any process which is updating

(witing) the individual components Oof the record nust have exclusive

access to it, or chaos will ensue. Thus we need a class of monitors; an

21

instance of this class local to each individual aircraft record wll
enforce the required discipline for that record. If there are many
aircraft, there is a strong notivation for mnimzing |ocal data of the
monitor; and if each read or wite operation is brief, we should also
mnimze the tine taken by each froni t or entry.

Wien nmany readers are interested in a single aircraft record, there
is a danger that a witer will be indefinitely prevented from keeping
that record up to date. W therefore decide that a new reader should
not be permtted to start if there is a witer waiting. Simlarly, to
avoi d the danger of indefinite exclusion of readers, all readers waiting
at the end of a wite should have priority over the next witer. Note
that this is a very different scheduling rule fromthat propounded in [4],
and does not seem to require such subtlety in inplenmentation. Nevertheless,
it my be nore suited to this kind of application, where it is better to
read stale information that to wait indefinitely!

The nonitor obviously requires four local procedures:

start read entered by reader who wishes to read.

end read entered by reader who has finished reading.
start wite entered by witer who wishes to wite.
end wite entered by witer who has finished witing.

W need to keep a count of the nunber of users who are reading, so that
the last reader to finish will know this fact
readercount:integer.
VW also need a Boolean to indicate that soneone is actually witing:
busy:Boolean;
W introduce separate conditions for readers and witers to wait on:
OKtoread, OKtowrite:condition;
The following annotation is relevant
OKtoread = — busy
OKtowrite = — busy & readercount =0

invariant :busy = readercount =0

22

cl ass readers and writers:monitor

begi n readercount:integer;
busy:Boolean;
OKtoread, OKtowrite:condition;

procedure star-tread,

begin if busy V Oxtowrite.queue then OKtoread.wait;

readercount :=readercount + 1;_

OKtoread.signal; conment once one reader can start, they all can;
end startread,

procedur e endread;

begi n readercount :=readercount -1,
i f readercount =0 then OKtowrite.signal
end endread;

procedure startwite;

begi n
if readercount # 0 v busy then OKtowrite.wait
busy :=true

end startwite,;

procedure endwite;
begi n busy: = fal se;
i f OKtoread.queue then OKtoread.signal el se OKtowrite.signal
end endwite;

readercount :=Q
busy :=false;
end readers and witers;

I amgrateful to Dave Gorman for assisting in the discovery of this
sol ution.

25

7. Conclusion

Thi s paper suggests that an appropriate structure for a nodul e of
an operating system which schedul es resources for parallel user
processes, is very simlar to that of a data representation used by a
sequential program However, in the case of nonitors, the bodies of the
procedures nust be protected agai nst re-entrancy by being inplenented as
critical regions. The textual grouping of critical regions together with
the data which they update seens nuch superior to critical regions
scattered through the user program as described in [12]. It also
corresponds to the traditional practice of the witers of operating
system supervisors. It can be recommended without reservation

However, it is much nore difficult to be confident about the condition
concept as a synchronizing primtive. The synchronizing facility which is
easiest to use 1s probably the conditional wait [2, 12]

wai t (B);

where B is a general Boolean expression (it causes the given process to
wait until B becomes true); but this may be too inefficient for genera
use in operating systems. The condition variable gives the progranmer
better control over efficiency and over scheduling; it was designed to be
very prinmtive, and to have a sinple proof rule. But perhaps sone other
compromise between convenience and efficiency mght be better. The
question whether the signal should always be the |ast operation of a
moni tor procedure is still open. These problens will be studied in the
design and inplementation of a pilot project operating system currently
enjoying the support of the Science Research Council of Geat Britain.

i. Acknow edgnents

The development of the nonitor concept is due to frequent discussions
and conmunications with E. W Dijkstra and P. Brinch-Hansen. A nonitor
corresponds to the "secretary" described in [9], and is also described
in[1, 3].

Acknowledgment is also due to the support of IFIP Wa 2.3, which
provides a meeting place at which these and many other ideas have been

germnated, fostered, and-tested.

2L

Ref er ences

(1] Brinch-Hansen, P. "Structured Miltiprograming," C.ACM Vol. 15,
No. 7 (July 1972).

[2] Brinch-Hansen, P.~"A conparison of two synchronizing concepts,"
Acta Informatica 1, 190-199, (i972).

[3] Brinch-Hansen, P. Qperating System Principles. Prentice-Hall, 1973.
[4L] Courtois, P.J., Heymans, F., Parnas, D. . "Concurrent control

with readers and witers," c.AcM 1k, 667-668 (1971).

[5] Courtois, P.J., Heymans, F., Parnas, D. L. "Conments on [2],"
Acta Informatica 1, 375-376 (1972).

(6] Dahl, 0. J. "Herarchical Program Structures" in Structured
Progranm ng, Academi c Press, 1972.

[7] Dijkstra,, E W "Cooperating Sequential Processes" in Progranm

Languages, (ed. F. Genuys), Academic Press, 1968.

ng

[8] Dijkstra, E W "A constructive approach to the problem of program

correctness," BIT, 8, 174-186 (1968).

[9] Dijkstra, E. W "Herarchical Odering of Sequential Processes,
in Qperating Systens Techni ques, Academ c Press, 1972.

[10] Dijkstra, E©. W "Information streans sharing a finite buffer,"”
Information Processing Letters, 1, 5, 179-180, (Cctober 1972).

[I'l] Djkstra, EE W "Scheduling strategies admitting bounded delays
only," Proceedings of the 1972 Spring Joint Computer Conference.

[12] Hoare, C. A. R "Towards a Theory of Parallel Programming," in
Operating Systenms Techni ques, Academ c Press, 1972.

[13] Hoare, C. A. R "Proof of correctness of data representations,"”
Acta Informatica 1, 271-281, (1972).

- [14] Hoare, C. A R "A structured paging system" Conputer Journal,
16, 3, 209-215, (1973).

[15] Wrth, N "The programming | anguage PASCAL," Acta Infornatica 1
35-63, (1971) .

25

, 1

