Android Security Mechanisms

Lecture 4

Security of Mobile Devices

2023

SMD Android Security Mechanisms, Lecture 4



SMD

Android Security Mechanisms

Application Sandbox

Android Permissions

Signing Applications

Bibliography

Android Security Mechanisms, Lecture 4



QOutline

SMD

Android Security Mechanisms

SMD Android Security Mechanisms, Lecture 4



Security Goals

» Protect application and user data
» Protect system resources
> Isolate app from the system, other apps and the user

Android Security Mechanisms, Lecture 4



Key Security Features

P> Linux kernel security
» Application sandbox
» Signed applications
» Permissions
» Secure IPC

SMD Android Security Mechanisms, Lecture 4



QOutline

Application Sandbox

Android Security Mechanisms, Lecture 4



Sandboxing

» Mechanism based on UIDs

» [solate applications

» Unique UID assigned to each application at installation time
» Dedicated process running as that UID

» Dedicated directory - only that UID has rwx permissions

» Process-level and file-level sandbox

» Enforced at kernel-level

SMD Android Security Mechanisms, Lecture 4 7/55



Application Files Permissions

» Each app - dedicated data directory

» rwx permissions only for that app UID/GID
» Other apps cannot access those files

» Cannot directly share files with other apps

Android Security Mechanisms, Lecture 4



UIDs

> Well-defined UIDs for system services and daemons
» User root UID 0
» Very few daemons under root UID 0
» User system UID 1000
» Special priviledges
» UIDs for system services start at 1000
» App UIDs start at 10000

Android Security Mechanisms, Lecture 4



QOutline

Android Permissions

Android Security Mechanisms, Lecture 4

10/55



Android Permissions

By default, applications cannot perform operations to impact
other apps, the OS or the user
Permission - the ability to perform a particular operation

Built-in permissions documented in the platform API
reference
» Defined in the android.* package

Custom permissions - defined by system or user apps

Android Security Mechanisms, Lecture 4 11/55



Workflow

Source: https://developer.android.com/guide/topics/permissions/overview

Android Security Mechanisms, Lecture 4



https://developer.android.com/guide/topics/permissions/overview

Android Permissions

» Defining package + .permission + name

» android.permission.REBOQOT
» com.android.launcher3.permission.RECEIVE_LAUNCH_-

BROADCASTS
» Declare permissions in AndroidManifest.xml

<uses-permission android:name="android.permission.INTERNET" />

» Install-time & runtime permissions

Android Security Mechanisms, Lecture 4 13/55



Types of Permissions

» Install-time

» Runtime

» Special permissions

» Type => risk, scope of the permission

SMD Android Security Mechanisms, Lecture 4

14/55



Install-time Permissions

> Granted at installation time
» Minimally affect other applications
» Should be declared on Google Play

> Examples: access network, view network connections, keep
phone awake.

Android Security Mechanisms, Lecture 4 15/55



Normal and Signature Permissions

» Subtypes of install-time permissions: normal & signature

> Normal
» Don't affect the system, other apps, user's privacy
» Normal protection level
» Signature
» Apps signed with the same certificate as the app that defined

the permission
» Signature protection level

Android Security Mechanisms, Lecture 4 16/55



vVvYVvyVvyVvyy

Runtime Permissions

Dangerous permissions

Access to restricted data and restricted actions

Need to be requested from the user at runtime

System prompt used for asking the user to allow or deny
Needed for accessing user’s private data

Dangerous protection level

Android Security Mechanisms, Lecture 4 17/55



vVvYVvyVvyVvyy

Special Permissions

Defined only by the platform or OEMs
Powerful and dangerous permissions
Drawing over other apps

System Settings — > Special App Access
Allow operations for certain applications

Appop protection level

Android Security Mechanisms, Lecture 4

18/55



1)
S
o

Workflow for Runtime Permissions

Android Security Mechanisms, Lecture 4



https://developer.android.com/training/permissions/requesting

Add Permission

in Manifest

» On all Android versions

<manifest xmlns:android="http://schemas.android.com/apk/res/android”
package="com.example.smd">

<uses—permission android:name="android. permission.SEND_SMS" />
<l— other permissions go here —>

<application ...>

</application>
</manifest>

SMD Android Security Mechanisms, Lecture 4

20/55



Check for Permissions

» Runtime permissions must be granted by the user
» Check if app has runtime permission before performing
operation
» Permissions can be revoked from Settings
> ContextCompat.checkSelfPermission()

» Returns PERMISSION_GRANTED - operation can be performed
» Returns PERMISSION_DENIED - permission must be requested

Android Security Mechanisms, Lecture 4 21/55



Request Permissions

SMD

» When checkSelfPermission() returns
PERMISSION_DENIED
» Method ActivityCompat.requestPermissions()
» Permissions list
» Request code

» For example:

ActivityCompat.requestPermissions(this, new Stringl[]
{android.Manifest.permission.ACCESS_COARSE_LOCATION,
android.Manifest.permission.READ_PHONE_STATE,
android.Manifest .permission.WRITE_EXTERNAL_STURAGE} , MY_REQ);

Android Security Mechanisms, Lecture 4

22/55



Request Permissions

» Dialog box shown by the system

P> Requests permissions

» Cannot be changed by the app

» Explanation provided before requesting permissions
» Asynchronous

» Response received in callback

Android Security Mechanisms, Lecture 4 23/55



Request Permissions - Example

if (ContextCompat.checkSelfPermission(thisActivity ,
Manifest. permission .READ_.CONTACTS)
I= PackageManager.PERMISSION_.GRANTED) {

// Permission is not granted

ActivityCompat.requestPermissions (thisActivity ,

new String[]{ Manifest.permission . READ_.CONTACTS},

MY_PERMISSIONS_REQUEST_READ_CONTACTS);
// Results in received in callback

} else {

// Permission has already been granted
}

Android Security Mechanisms, Lecture 4

24/55



Handle Permissions Request Response

» User responds -> system calls
onRequestPermissionsResult () callback
» App must override this method to receive results
P> Request code, permissions and results received as parameters
» Check request code
» Check if permission is granted

SMD Android Security Mechanisms, Lecture 4 25/55



Handle Permissions Request Response

» Permission granted
» Do permission-related task
» Permission denied

» Disable functionality
» Announce user

SMD Android Security Mechanisms, Lecture 4

26/55



Handle Permissions Request Response - Example

@Override
public void onRequestPermissionsResult(int requestCode,

switch (requestCode)

String permissions[], int[] grantResults) {

case MY_PERMISSIONS_REQUEST_READ_CONTACTS: {
if (grantResults.length > 0

&& grantResults [0] = PackageManager.PERMISSION_.GRANTED) {
// permission was granted, do task

} else {
// permission denied, disable functionality

¥

return;

Android Security Mechanisms, Lecture 4 27/55



Custom Permissions

» Defined by apps

» Checked statically by the system or dynamically by the
components

» Defined in AndroidManifest.xml

Android Security Mechanisms, Lecture 4 28/55



Custom Permissions - Example

<permission—tree
android :name="com.example.app. permission”
android:label="0string /example_permission_tree_label” />

<permission—group
android :name="com.example.app.permission—group . TEST_.GROUP"
android:label="@string /test_permission_group-label”
android:description="@string/test_permission_group_-desc” />

<permission
android :name="com.example.app. permission.PERMISSION1"
android:label="Qstring /permissionl_label”
android:description="@string/permissionl_desc”
android : permissionGroup="com.example.app.permission—group.TEST_-GROUP"
android: protectionLevel="signature” />

SMD Android Security Mechanisms, Lecture 4

29/55



Permission Enforcement

» A permission can be enforced in a number of places

>

>
>
>
>

Making a call into the system
Starting an activity

Starting and binding a service
Sending and receiving broadcasts
Accessing a content provider

Android Security Mechanisms, Lecture 4

30/55



Kernel-Level Enforcement

» Access to regular files, device nodes and local sockets
managed by the Linux kernel, based on UID, GID

P> Permissions are mapped to supplementary GIDs
» Built-in permission mapping in
/etc/permission/platform.xml

Android Security Mechanisms, Lecture 4 31/55



Kernel-Level Enforcement

> Example:
» INTERNET permission associated with GID inet
» Only apps with INTERNET permission can create network

sockets
» The kernel verifies if the app belongs to GID inet

Android Security Mechanisms, Lecture 4 32/55



Framework-Level Enforcement - Static Enforcement

> Two types of enforcement: static & dynamic
» Static permission enforcement
» Enforcement by runtime environment
» System keeps track of permissions associated to each app
component
» Checks whether callers have the required permission before

allowing access
P Less flexible

SMD Android Security Mechanisms, Lecture 4 33/55



vvyyy

Framework-Level Enforcement - Static Enforcement

An app tries to call a component of another app - intent
Target component - android:permission attribute
Caller - <uses-permission>
Activity Manager

P> Resolves intent

» Checks if target component has an associated permission
» Delegates permission check to Package Manager

If caller has necessary permission, the target component is
started

Otherwise, a SecurityException is generated

Android Security Mechanisms, Lecture 4

34/55



Framework-Level Enforcement - Dynamic Enforcement

» Dynamic permission enforcement

>

>

Components check to see if the caller has the necessary
permissions

Decisions made by each component, not by runtime
environment

More fine-grained access control

More operations in components

Android Security Mechanisms, Lecture 4 35/55



Framework-Level Enforcement - Dynamic Enforcement

> Context.checkCallingPermission(String permission)
» [PC call to a service
P> Context.checkPermission(String permission, int
pid, int uid)
P> PackageManager.checkPermission(String permission,
String package)

SMD Android Security Mechanisms, Lecture 4 36/55



Activity Permission Enforcement

» android:permission of <activity>
» Permission is checked when calling:

P> Context.startActivity()
> Activity.startActivityForResult()

> SecurityException if caller does not have the permission

Android Security Mechanisms, Lecture 4 37/55



Service Permission Enforcement

» android:permission of <service>
» Permission is checked when calling:

» Context.startService()
» Context.stopService()
» Context.bindService()

» SecurityException if caller does not have the permission

SMD Android Security Mechanisms, Lecture 4

38/55



Broadcast Permission Enforcement

» android:permission of <receiver>
» Or supply permission to Context.registerReceiver ()
» Permission is checked after Context.sendBroadcast ()

» If caller does not have the permission

» The broadcast will not be delivered
» An exception will not be thrown

SMD Android Security Mechanisms, Lecture 4 39/55



Broadcast Permission Enforcement

» Restrict which receivers can receive a broadcast
» Supply permission to Context.sendBroadcast ()

» If receiver does not have the permission

» The broadcast will not be delivered
» An exception will not be thrown

Android Security Mechanisms, Lecture 4

40/55



Broadcast Permission Enforcement

P> Both sender and receiver may require permissions

» Broadcast is delivered if both permission checks pass

Android Security Mechanisms, Lecture 4 41/55



Content Provider Permissions

SMD

» Single read-write provider-level permission
» android:permission
» Separate read and write provider-level permission
» android:readPermission and android:writePermission
P Path-level permission
» <path-permission> to specify URI
» Permissions for specific URIs
> Temporary permission

» Delegate temporary access to an application
» android:grantUriPermissions or
<grant-uri-permission>

SMD Android Security Mechanisms, Lecture 4 42/55



Content Provider Temporary Permissions

» Give another app temporary permissions for an URI

» |ntent

> URI
» Intent.FLAG_GRANT_READ_URI_PERMISSION

» Intent.FLAG_GRANT_WRITE_URI_PERMISSION
> startActivity(Intent)

Android Security Mechanisms, Lecture 4 43/55



Content Provider Permission Enforcement

» Permission checked when another app makes operations on
the provider

P Read permission - ContentResolver.query()

» Write permission - ContentResolver.insert (),
update(), delete()

» SecurityException if caller does not have the permission

Android Security Mechanisms, Lecture 4 44/55



QOutline

Signing Applications

Android Security Mechanisms, Lecture 4

45/55



vVvYVvyVvyVvyy

Signing Applications

Identify the developer of the application

All apps must be signed

Unsigned apps rejected by Google Play and package installer
Each apk signed with a certificate

Identifies the developer of the application

Securing updates

Android Security Mechanisms, Lecture 4 46/55



Signing Applications

» Two methods:
» Using a personal app signing key
» Using an upload key

Android Security Mechanisms, Lecture 4

47/55



Personal App Signing Key

» Developer generates, stores the key
» Strong password for keystore

» Sign apk and upload

P> Problems: key is lost or gets stolen

Android Security Mechanisms, Lecture 4

48/55



n

Personal App Signing Key

MD

Developer —

App signed with
app signing key

—— Google

App signing
key

App signed with
app signing key

—

User

Source: https://developer.android.com/studio/publish/app-signing

Android Security Mechanisms, Lecture 4


https://developer.android.com/studio/publish/app-signing

Upload Key

Developer generates, stores the upload key

Sign apk and upload

Google generates app singing key and signs your app
Google Key Management System

Upload key may be reset if it's lost or stolen

Safer method

Android Security Mechanisms, Lecture 4

50/55



n

Upload Key
App signed with App signed with
upload key app signing key
Developer — u —— Google — m —> User
Upload App signing
key key

Source: https://developer.android.com/studio/publish/app-signing

Android Security Mechanisms, Lecture 4

:
51/55


https://developer.android.com/studio/publish/app-signing

Signature Verification

» Package Manager verifies signature
P At installation time

» Verification uses the public key in the certificate included in
the apk

» Grants package integrity
» System applications signed with the platform key

Android Security Mechanisms, Lecture 4

52/55



QOutline

Bibliography

Android Security Mechanisms, Lecture 4

53/55



Bibliography

Android Security Internals, Nikolay Elenkov
https://source.android.com/security/

https://developer.android.com/guide/topics/
permissions/overview

https://developer.android.com/training/
permissions/requesting

https://developer.android.com/training/
permissions/restrict-interactions

https://developer.android.com/studio/publish/
app-signing

Android Security Mechanisms, Lecture 4 54/55


https://source.android.com/security/
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/requesting
https://developer.android.com/training/permissions/restrict-interactions
https://developer.android.com/training/permissions/restrict-interactions
https://developer.android.com/studio/publish/app-signing
https://developer.android.com/studio/publish/app-signing

v

vy

Keywords

Permissions
Protection levels

Install-time
permissions

Runtime permissions
Special permissions

Signature permissions

Static enforcement
Dynamic enforcement

Custom permissions

| 2

| 2

| 2

» Signed applications
» Upload key

>

App signing key

Android Security Mechanisms, Lecture 4

55/55



	Android Security Mechanisms
	Application Sandbox
	Android Permissions
	Signing Applications
	Bibliography

