
The Basics of iOS 
Development

 A quick overview of the Apple way of building 
apps…



A bit on the evolution of iOS

- first iPhone launched in 2007
- AppleTV in 2007
- iPhone 4 in 2010
- developing UI using Storyboards in 2010
- Swift announced in 2014
- Apple Watch, in 2014
- Face ID 2017
- Combine and SwiftUI in 2019



The development environment

- you need a Mac to develop iOS apps
- XCode

- almost everybody uses it
- compiles, debugs, runs the tests
- integrated with the instruments for analysing your app

- you can use an iOS Simulator if you don't have the device
- a bit difficult to distribute the app to other phones



Building the User Interface

- first there were the XIBs
- then came the Storyboards and Constraints
- the old way of doing the UI is using UIKit classes like

- UIViewController
- UITableViewController
- UICollectionViewController

- then came SwiftUI (analog to Jetpack Compose)
- other frameworks commonly used:

- CoreGraphics
- CoreAnimation
- Metal



Lifecycle and Navigation

- most commonly overridden methods in UIViewController:
- viewDidLoad
- viewWillAppear
- viewDidAppear
- viewWillDisappear

- navigation can be done by:
- navigation controller, that manages the stack
- presenting modally from the UIViewController
- using Storyboard segues



Data persistence

- UserDefaults: for app preferences
- Documents directory: the equivalent of the internal 

storage
- Keystore: for encrypted data
- CoreData: for structured data
- there is no external storage, but you can use something 

like "File Sharing"



Testing

- very important, but  sometimes overlooked
- unit testing, with XCTest
- UI testing
- snapshot testing, but not part of XCode
- can use other 3rd party frameworks



Comparison between iOS and Android

Objective-C

Swift

UIKit, XIBs, Storyboards

Swift Concurrency, async & await

Swift UI

Combine

XCode

XCode

Java

Kotlin

Activities, XMLs

Coroutines

Jetpack Compose

Flow

Android Studio

Gradle



Some differences between iOS and Android

- fewer devices on iOS -> easier to test
- most users update their devices to the latest OS -> can 

drop support for earlier versions
- no services in iOS, but you can achieve something similar 

with Background Modes
- stricter control from Apple, harder to install apps that 

are not in App Store



Architecture patterns

- by default, Apple uses a lot of the MVC pattern, and 
delegation pattern

- in practice there are other patterns like MVVM, VIPER 
- also, reactive programming is very popular, with 

frameworks like RxSwift or Combine
- SOLID principles also apply to mobile development



Deploying your app

- you must pay the annual 99 USD fee 
- for each app you create a provisioning profile
- each app has an unique App ID
- how to do it:
1. build the IPA
2. upload to testflight
3. wait for the approval
4. publish in App Store



Creating the first app

Doing a couple of the labs in XCode, with iOS.

- setting up the first project
- creating the hello world app
- doing some screen navigation
- adding a dependency
- creating a request



Where to go to for more information?

- Stanford's CS193p course
- Caio & Mike, good talks about architecture
- Bart Jacobs, with a couple of sample apps
- Swift by Sundell
- iOS dev weekly
- Apple's annual WWDC

- Robert Martin (aka Uncle Bob) about Computer Science, in 
general

https://cs193p.sites.stanford.edu/
https://www.essentialdeveloper.com/
https://cocoacasts.com/
https://www.swiftbysundell.com/
https://iosdevweekly.com/
https://developer.apple.com/videos/

