

Introduction Lecture 1

Security of Mobile Devices

2022

Android Architecture

Application Development Overview

Security Mechanisms

Android Architecture

Application Development Overview

Security Mechanisms

- ▶ Team
 - ► Laura Ruse, Costin Carabaş, Florin Mihalache, Ionuț Mihalache, Cosmin Chenaru, invited speakers
- Schedule
 - ► Lecture: Wednesday 8-10, on MS Teams
 - Labs: Thursday, 8-10, 18-20, 20-22, on MS Teams

- Android OS:
 - ► SDK
 - Internals
 - Security architecture
 - Network security
 - Secure booting, system updates and root access
 - Vulnerabilities and malware
- ► Invited speakers from industry

- ▶ Wiki: http://ocw.cs.pub.ro/courses/smd
 - Courses
 - Labs
 - Class registrer
 - Calendar
- ► Moodle: http://curs.upb.ro/
 - https://curs.upb.ro/2021/course/view.php?id=5419

- ▶ **0.5 points** Lecture tests and attendance
- ▶ 1 point Lab activity
- ► 4 points Assignment
- ▶ 1.5 points Mid-term exam
- ▶ 3.5 points Final exam
- ▶ 50% (2.5 points) from the lab activity and the assignment are required to enter the exam.
- ▶ 5p are required to pass the class.

- ▶ **0.5 points** Lecture tests and attendance
 - ▶ the test will be held at the end of the lecture, on Moodle
 - the test will consist of one simple question
 - the question will be related to what was presented at the course

- ▶ 1 points Lab activity
 - Android Studio, Java, Kotlin (if you want to)
 - ► Lab allocation
 - Github Classroom
 - The lab will be solved during the lab (it may be finished after the lab)
 - Submit until Sunday 23:55 (same week)

- ▶ **4 points** Assignment/project
 - ▶ https://ocw.cs.pub.ro/courses/smd/res/assignment
 - ▶ Project theme registration April 11th, 0.3p penalty
 - ▶ Intermediary project presentation May 19th, 0.5p penalty
 - Final project presentation June 2nd

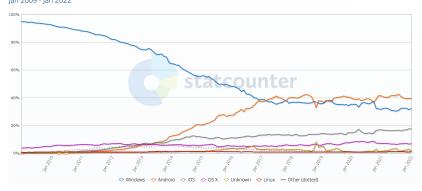
- ▶ 1.5 points Mid-term exam (first 4 lectures)
- ▶ 3.5 points Final exam (next 4 lectures)
- ▶ 20 multiple choice questions
- 20 minutes
- each question has 4 choices of which only one is correct
- correct answer 1 point
- incorrect/no answer 0 points

► For those who retake the course, all the forms of examination except the final exam will be equivalated/scaled

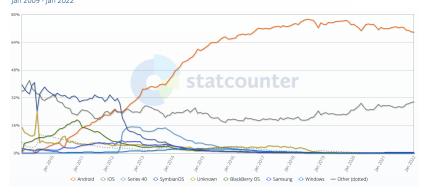
- ► Embedded Android: Porting, Extending, and Customizing, Karim Yaghmour, 2015
- ► Android Security Internals, Nicolay Elenkov, 2015
- Android Hacker's Handbook, Joshua J. Drake, 2014
- ► Introducere in sistemul de operare Android Laura Ruse, Vlad Traistă-Popescu, 2021
- ► Securitatea sistemului de operare Android Laura Ruse, Vlad Traistă-Popescu, 2021
- http://developer.android.com

Android Architecture

Application Development Overview


Security Mechanisms

- ► Open-source OS for mobile devices
- ▶ 2.8 billion monthly active users (2021)
- ► Mobile OS market share (Jan 2022)
 - ► Android 69.74%
 - ► iOS 29.49%
- ► OS market share (across all devices) (Jan 2022)
 - Android 39.45%
 - ▶ Windows 32.11%
 - ▶ iOS 17.56%
 - ► OS X 6.74%
 - ► Linux 0.94%
- Source: Statcounter
- ► Official application market: Google Play Store



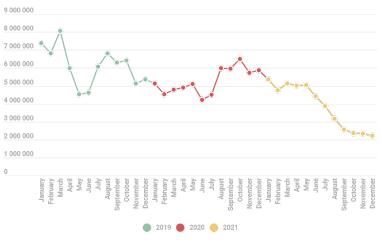
Source: Statcounter

SMD

Mobile Operating System Market Share Worldwide Jan 2009 - Jan 2022

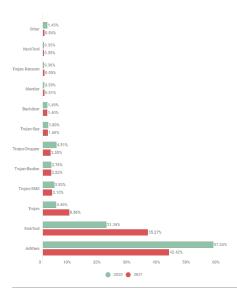
Source: Statcounter

SMD

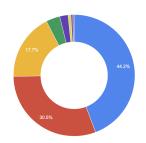


- ▶ Apps that could put users, user data and devices at risk
- ▶ Why the keyword potentially?

- https://securelist.com/ mobile-malware-evolution-2021/105876/
- ► In 2021 Kaspersky detected:
 - ► 3,464,756 malicious installation packages
 - 97,661 new mobile banking Trojans
 - ► 17,372 new mobile ransomware Trojans



kaspersky


- ► Google Play Protect detect and remove PHAs
- Statistics from Google:
- https://transparencyreport.google.com/ android-security/store-app-safety?hl=en

Jul 2021 - Sep 2021 ▼

Google Play

Category	PHA Install Rate
Toll fraud	0.014901969%
Spyware	0.0102640646%
Phishing	0.005973268%
Backdoor	0.001250422%
Privilege escalation	0.0007412477%
Trojan	0.0002609596%
Hostile downloader	0.0001614188%
Commercial spyware	0.0001128817%
DOS	0.0000050745%
Spam	0.0000036137%
Rooting	0.000002497%
Windows malware	0.000001482%
SMS fraud	0.0000011766%
Call fraud	0.000000153%
Ransomware	0.000000117%

Stock applications

Other applications

android.*

System Services Activity Manager / Power Manager / Package Manager / Notification Manager / ...

java.*

Dalvik / ART / Zygote

Native Libraries

HAL

Native Daemons Init / Toolbox

Linux Kernel Wakelocks / Lowmem / Binder / Ashmem / Logger / RAM Console / ...

- ► Linux kernel
 - ► Android Mainlining Project / Android Upstreaming
 - Androidisms
 - Advantages
- ► Hardware Abstraction Layer (HAL)
 - Standard interfaces
 - ► Multiple library modules
- ► Native userspace
 - ▶ init process
 - Native daemons
 - Native libraries
 - ► Through Java framework APIs
 - ► Through Android NDK

- Android Runtime
 - Dalvik
 - ▶ ART
 - ► Ahead-Of-Time (AOT) compilation
- Java Runtime libraries
 - ▶ java.* and javax.*
 - ► Apache Harmony Project
 - ► Java Native Interface (JNI)

- System services
 - Fundamental features of Android
 - Native and Java code
 - Service interface
- Android framework libraries
 - ► Base components for app development
 - ► Interaction with the hardware
 - Interaction with high level services
 - Framework APIs

- Modified to work on mobile devices
- ▶ Patches on top of mainline Linux
- ► Android Mainlining Project / Android Upstreaming
- ► Wakelocks (also added to Linux 3.5)
- ► Low-Memory Killer (3.10)
- ▶ Binder (3.19)
- ► Alarm (3.20)
- ► Logger (3.20)
- Only suspend to memory

- Default until Android 5.0
- ► Runs Dalvik-specific byte-code
- Dalvik Executable Format (DEX)
 - ► Runs .dex files instead of .jar files
 - .dex is 50% smaller than corresponding .jar
- ► Just-In-Time compilation
 - From Android 2.2
 - Short segments of bytecode translated into native machine code at runtime
 - ► Improves performance

- ► From Android 5.0
- More advanced runtime architecture
- ► Ahead-Of-Time compilation
 - ▶ Just once, at installation
 - Entire DEX file -> executable for target device
 - ► Instead of JIT compilation and Dalvik interpretation
 - ► More efficient, reduced power consumption
 - ► More space to store the executables
- ▶ Improved memory allocation, GC, debugging and profiling

- bioniC (libc)
 - ► Much smaller and faster than glibc
- ► SQLite
 - ► Managing SQL databases
- OpenGL ES
 - ► Standard software interface for 3D processing hardware
- ▶ WebKit
 - Display web pages
 - ► Android, Apple iOS, BlackBerry, Tizen
- ► SSL
 - Securing the communication over Internet

- System Services and Managers
 - ► Telephony
 - Location
 - Activity
 - Package
 - Notification
- ► System Content Providers
 - Calendar
 - Dictionary
 - Contacts
 - Settings

Android Architecture

Application Development Overview

Security Mechanisms

- User interaction
 - Activities
- ► Background functionality
 - Services
 - Broadcast Receivers
 - Content Providers
- Intents

- ► Lightweight RPC
- ► Remote object invocation
- ► In process and interprocess
- ► Transmit parcels of data
- ► Synchronous calls (blocking)

Android Architecture

Application Development Overview

Security Mechanisms

- ► Linux kernel security
 - ► Isolate user resources (file permissions)
 - Process runs with user's UID/GID (SUID, SGID)
- ► In Android UIDs are used to identify applications
 - Isolate applications
 - Basis for sandboxing

- ▶ Unique UID assigned to each application at installation time
- Dedicated process running as that UID
- Dedicated directory only that UID has read/write/execute permissions
- Process-level and file-level sandbox
- Kernel level sandbox all applications (native and VM)

- Well-defined UIDs for system apps and daemons
- Very few daemons under root UID 0
- ► UIDs for system services start at 1000
- ▶ User *system* has UID 1000
 - Special priviledges
- ► App UIDs start at 10000

- ► Each app dedicated data directory
- rwx permissions only for that app UID/GID
- MODE_WORLD_READABLE, MODE_WORLD_WRITEABLE flags
 - ▶ Deprecated from Android 4.2

- ► Apps with the same UID
- Share files
- ► Run in the same process
- Frequently used by system apps
- ► Apps signed with the same code singining key
- ► Deprecated since Android 10

- Operations outside sandbox
- ▶ Declared statically in the Manifest file
- Before Android 6
 - Granted at installation time
 - Cannot be revoked
- ► From Android 6
 - Granted at runtime
 - Revoked and granted from settings

- Access to lower-level resources.
 - ► Enforced by the Linux kernel
 - ► Check UID/GID vs resource's owner
- ► Access to high-level Android components
 - ► Enforced by Android OS or a certain component

- ► All apps signed by their developer
- Apk signing is based on jar signing
- Same origin policy
 - App updates from the same developer
- ▶ Platform keys for signing system apps
 - Shared resources, same process
 - Generated and controlled by the entity that compiled the Android OS

Team, Schedule and Grading

Android Architecture

Application Development Overview

Security Mechanisms

Bibliography

- https://gs.statcounter.com/os-market-share/ mobile/worldwide/#monthly-200901-202201
- https://gs.statcounter.com/os-market-share# monthly-200901-202201
- https://developers.google.com/android/ play-protect/potentially-harmful-applications
- https://securelist.com/ mobile-malware-evolution-2021/105876/
- https://transparencyreport.google.com/ android-security/store-app-safety?hl=en
- ► Karim Yaghmour, Embedded Android: Porting, Extending, and Customizing, Chapter 2

- https://developer.android.com/guide/components/ activities/intro-activities
- https:
 //developer.android.com/guide/components/services
- https://developer.android.com/guide/components/ broadcasts
- https://developer.android.com/guide/topics/ providers/content-provider-basics
- https://developer.android.com/guide/components/ intents-filters
- Android Security Internals, Nicolay Elenkov, 2015
- Android Hacker's Handbook, Joshua J. Drake, 2014

- ► PHA
- ► Linux kernel
- Android Runtime
- Dalvik
- ► ART
- ► Native libraries
- Application framework
- Activities

- Services
- Broadcast receivers
- Content providers
- ▶ Binder
- Sandboxing
- Permissions
- ► Code signing