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In recent decades, technology opened the path to device miniaturization and 

specialization, which enabled the presence of an ever increasing number of 

embedded computing systems which interact, enhance and blend into a person’s 

everyday life. This thesis presents research in the field of Proactive Computing and 

Wireless Sensor Networks with contributions in energy harvesting, energy efficiency 

and autonomy, task scheduling algorithms and monitoring of sensor networks, 

culminating with the development of a framework for sensor network management.  

The theoretical research presented in this work has been validated by the 

contributions made to three projects: Sensei, integrating the physical world with the 

digital world of the network of the future; EUWB - Coexisting Short Range Radio by 

Advanced Ultra-Wideband Radio Technology; and TWISNET, Trustworthy Wireless 

Industrial Sensor NETworks. 
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 Introduction 
 

In 1991, Mark Weiser[1] predicted a 21
st
 century where everyday personal computers 

would be replaced by a considerable number of embedded networked devices which would be 

completely integrated into our environment up to the point where they would become unnoticed, 

or even invisible to the user. 

Wireless Sensor Networks are a technology that can offer a significant contribution in 

completing Weiser’s ―ubiquitous computing‖ paradigm and should represent a new revolution in 

computing, as were the mainframe and the personal computer before them. 

Growing importance of context-awareness as an enabler for more intelligent, invisible 

and autonomous applications and services has highlighted the need for a greater integration of 

the physical with the digital world. Energy in particular is becoming an increasingly important 

topic in our lives. As we become more aware of the limitations and the costs of the energy we 

consume in our daily life, in our personal environment, we look on technology to give us aid in 

optimizing our efficiency.  

Wireless Sensor Networks are subjected to severe constraints which are typically 

application-dependent. Constraints usually fall in, but are not restricted to, categories such as 

size, number of nodes, energy availability and processing capabilities. However, the prevailing 

constraint in almost all sensor network applications is network autonomy, that is, the network 

should be able to organize, manage and repair itself with minimum or no need for human 

intervention. 

The goal of this thesis is to design highly energy and spectrum efficient mechanisms and 

protocols to capture and actuate the context information. The research focuses on enabling 

Wireless Sensor Nodes to achieve energy independence by harvesting and efficiently using 

energy from the environment. 
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Wireless Sensor Network applications are diverse and incorporate a large range of 

requirements for services, deployment areas, topology, lifetime, reliability and so on. Therefore, 

the first goal of this thesis was to extract and define the components and requirements that are 

generic and pertain to all sensor network classes. In order to better formulate our research goals, 

it is also of value to categorize sensor islands into classes which share the aforementioned 

characteristics. 

Optimisation techniques found in this thesis are not confined only to software 

frameworks and algorithms. A study of hardware techniques in lowering power consumption has 

also been made with emphasis on implementing smart power management algorithms and 

circuits at sensor node level.  

Also, research has been made in the direction of energy harvesting systems by studying 

four of the most promicing harvesting sources and adapting such circuitry to a wireless sensor 

node in order to prolong its lifetime, in some cases indefinitely. 

The greatest contribution of this thesis is the development of a sensor network 

management framework which offers monitoring and actuation facilities for heterogeneous 

Wireless Sensor Network islands across different organizations. The suite solves issues that 

plague all modern sensor networks such as monitoring of different parameters, task alocation and 

energy profiling by implementing task scheduling algorithms based on multi-hop routing 

schemes and by supplying a flexible monitoring infrastructure that can be easily configured and 

adapted for any existing sensor network infrastructure.  

 

Thesis Plan 
 

Chapter 1 represents a state of the art in the field of wireless sensor networks. We 

describe the main architecture of a wireless sensor node and the characteristics shared by all 

sensor networks. Further, we go in depth with a description of sensor node components with an 

emphasis on current node architectures and a state of the art on power consumption for each 

separate subsystem. A survey on sensor network protocols and middleware is also present, with 

an emphasis on the two main protocols deployed on sensor nodes. The chapter finishes by setting 

the design goals for a low-power oriented wireless sensor network architecture. 

A classification of wireless sensor & actuator networks is presented in Chapter 2. In this 

chapter we identify the generic components that pertain to all sensor networks, such as place of 

deployment, attached infrastructures and lifetime constraints. Based on these properties, we 

categorize sensor networks into three major groups: Environmental Sensor Networks (ESN), 

Community Sensor Networks (CSN) and Body Sensor Networks (BSN). 

In this chapter we also focus on modeling sensors and actuator networks by classifying 

them into two main categories: the ones defined by standardization entities using XML or text-

table values; and others using ontologies. 

Chapter 3 delves into the topic of energy harvesting and how to apply it to a wireless 

sensor node. The study aims at applying a mathematical model of energy harvesting and 
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determining the efficiency of the most promising energy harvesting sources known to date, such 

as piezoelectric, thermal, photovoltaic and radiofrequency harvesters. Careful consideration is 

put into modeling each harvesting system and conducting experiments in order to determine the 

feasibility of deploying harvesting capabilities on a wireless sensor node. Also, in this chapter we 

model current energy storage systems that are available for sensor nodes and study their 

efficiency. A special emphasis is put on new energy storage systems, such as super-capacitors, 

and the possibility of being a better alternative to conventional batteries is being assessed.  

The Sparrow sensor node platform is presented in Chapter 4. Sparrow is a wireless 

sensor network architecture that has been built as a research platform for the energy harvesting 

techniques described in the previous chapter. It was also used to deploy and test a series of 

wireless applications including IEEE 802.15.4 [2], 6LoWPAN and ZigBee [3] networks. In this 

chapter we focus on implementing energy harvesting circuits into a wireless sensor node and we 

evaluate their contribution in increasing the total functioning time for the node. 

Chapter 5 details the Check Management Framework, which offers a monitoring and 

actuation framework for heterogeneous WSAN islands crossing the borders of different 

organizations, and having different network setups. One of the main components of the 

frameworks is an unconventional scheduling algorithm in which the main constraint is not time, 

but energy. As sensor networks are rarely subjected to hard deadlines, a more elegant approach is 

to design a scheduling algorithm that prioritizes energy consumption and task affinity. Check 

also offers a centralized monitoring, control and reconfiguration framework, which works toward 

the realization of the scalable internetworking, horizontalization and heterogeneity design goals. 

The last component provided by the Check Management Protocol Suite is the availability of a 

high-level, service-oriented self-healing strategy. 

In Chapter 6 we present a series of wireless sensor network applications that have been 

deployed in order to validate the concepts of the research stated in the previous chapters. The 

first application is a deployment in a residential environment and studies the components and 

services a sensor network oriented on home automation needs to offer.  

The second application studies the deployment of mobile sensor nodes in an urban 

environment with the specific task of gathering data and relaying it to a central coordinator. The 

purpose of the project is to measure environmental sensor data, such as air pollution and 

contaminants linked to automotive exhaust and make it available to the general public via an 

intuitive web interface. 

Chapter 7 presents in a concise form the conclusions of the research done in the thesis 

and elaborates on future work. The main contributions of the study to the field of wireless sensor 

networks and embedded systems in general are presented, with an emphasis on the algorithms 

and developed hardware platforms for energy harvesting. 
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Chapter 1  

Wireless Sensor Networks 
 

Wireless Sensor Networks (WSNs) or more generally Wireless Sensor and Actuator 

Networks (WSANs) are employed in a multitude of data acquisition, data processing, and control 

applications. Their advantages over traditional wired sensor and actuator networks include node 

mobility, increased reliability (due to the possibility of adaptive multi-hop data routing), easier 

installation and lower deployment cost. There are situations where wired data acquisition 

networks are impractical, such as environmental monitoring over large areas, or „intelligent‖ 

wearable devices forming so-called Body Sensor Networks. 

Wireless Sensor Networks consist of autonomous devices that are deployed in order to 

monitor and measure specific parameters of a geographical area. Initial development of Wireless 

Sensor Networks has been done by the military and consisted mostly of surveillance and 

battlefield management applications. Civilian applications soon followed with applications such 

as environmental monitoring, home automation, healthcare, and traffic management. 

 Measured parameters are typically environmental, such as light intensity, humidity, 

pressure or temperature. The advantage of WSNs over traditional measuring systems is that 

multiple measurements of the same parameters from different locations can be taken 

simultaneously by the different nodes. This contributes to a better understanding of the 

monitored phenomenon by offering a spatial distribution of measured data.  

The network is usually composed of multiple nodes that can be identical or have different 

purposes and capabilities. As a general rule, all nodes must have processing capabilities in order 

to sample data from sensors and a means of forwarding gathered data through the network. This 

is usually achieved by integrating a low-cost microprocessor or microcontroller into the design 

along with a radio or infrared transceiver. Also of note for the sensor architecture is the energy 

supply and storage system, which power the node’s electronics. Batteries of different sizes and 

chemistries have traditionally been used for this purpose, although there is a recent trend in 
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replacing them with alternate energy delivery or storage systems, such as photovoltaic panels or 

super-capacitors. 

 

User

Gateway

Sensor Nodes  
Figure 1. Typical WSN architecture 

 

Size of nodes can vary, from large shoebox-sized ones to nodes the size of a grain of salt, 

although no practical functioning of a node of such small dimensions has ever been achieved.  

Another important parameter for sensor nodes is the cost, which varies from a few euros 

to hundreds of euro, depending on the hardware and firmware capabilities of the node and the 

scale of deployment. However, there are some characteristics that are shared by all wireless 

sensor networks, such as: 

 Wireless communication. Nodes form single or multi-hop networks. 

 Ability to withstand harsh environmental conditions.  

 Fault tolerance. The network employs hardware and software fault-tolerance 

algorithms in particular for the wireless communication channel. 

 Low-power architecture. Most wireless sensor nodes have finite or limited energy 

supply. 

 Node mobility. There is a wide range of applications, like body sensor networks, where 

nodes are not stationary. 

 Heterogeneity of nodes. Not all nodes have the same functionality, measure the same 

parameters or even have the same hardware architecture. 

 Communication constraints. Due to the shared radio communication environment, 

packets can be lost. 

 Large scale of deployment. Typical WSN monitoring scenarios can employ hundreds to 

thousands of nodes spread over a large area. 

 Unattended operation. The network must be self-sufficient and self-reconfigurable. 
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The limitations in cost and size of wireless sensor nodes can lead to similar limitations on 

resources such as memory size, energy storage capacity, processor speed and bandwidth. WSN 

nodes have specific hardware characteristics and limitations. Most WSN nodes have limited 

available energy: some rely on batteries and some employ environmental energy harvesting 

techniques such as solar panels, wind- or vibration-powered generators or thermoelectric 

generators. Therefore WSN nodes tend to be small embedded systems with few processing 

resources and low bit rate, low range radio links. Cost and size restrictions impose similar 

constraints. 

Sensor network nodes form a wireless network with a topology that can vary from a 

single-hop star to a multi-hop tree or a mesh. Outgoing network traffic is directed towards one or 

multiple network sink nodes, also known as gateways, which provide the network link to a 

standard computing network, such as a LAN or the Internet which leads ultimately to the end 

user.  In some network architectures, the gateway nodes are different from the ordinary nodes 

because they posses more energy and communication resources. 

1.1 Power Consumption in Sensor Node Structures 
 

Also known as motes, sensor nodes are the main components of a WSN. They have 

limited communication, sensorial and processing capabilities which arise from limitations in 

hardware cost and energy supply. As the name implies, the main role of a sensor node is to 

measure parameters from its surrounding environment, do a minimum of on-board processing 

and forward the resulting data to its network peers. The communication can function the other 

way around, with motes receiving commands from supervisor entities in the network. 

This thesis focuses on power consumption optimization techniques for wireless sensor 

networks. Thus, the following discussion will focus on the power consumption aspects for all 

sensor node components. The typical architecture of a sensor node is shown in Figure 2. 

 

 
Figure 2. Structure of a typical WSN mote 

The main components of a sensor node as seen from the figure are the microcontroller, 

transceiver, external memory, power source and one or more sensors. WSN nodes are built by 

multiple vendors and may vary in size, power consumption, microprocessor architecture or 

sensor interfaces (Figure 3). 
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Figure 3. Different WSN nodes: a) Atmel AVRRAVEN, b) Berkeley Mica mote, c) Berkeley Spec 

mote, d) Tmote Sky 

1.1.1 The Microcontroller 
 

Microcontrollers are the preferred choice for integration in a sensor mote on account of 

their low cost and good computational capabilities. Inside a node architecture, their role is to 

coordinate and control the functionality of each component and to process data.  

Apart from microcontrollers, there are other available alternatives, such as 

microprocessors, Field Programmable Gate Arrays (FPGA), Digital Signal Processors (DSP) or 

Application-Specific Integrated Circuits (ASIC). 

Each of the four technologies has its advantages but it’s mainly their disadvantages that 

made them unappealing for use in wireless sensor nodes. 

Microprocessors generally have higher power consumption than microcontrollers which 

they balance by having higher processing speeds. However, most sensor network applications 

handle only tiny amounts of data even when compared to a modern tablet or netbook. Large 

amounts of computing power are therefore unnecessary and most motes employ cheap 8-bit 

microcontrollers as their central processing unit. Also, a significant disadvantage is the lack of 

integrated peripherals and communication interfaces, which are present in almost any modern 

microcontroller. 

Field Programmable Gate Arrays have the advantage of reconfigurability. Node hardware 

can be reprogrammed or updated as easily as with a software update, which could prove useful in 

a situation where nodes need such facilities. However, FPGAs have high energy consumption 

requirements and reprogramming them can take a significant load on the battery pack. Also, 

most applications do not require such high degrees of flexibility in reprogramming as most of 

their functionality can be added or modified with simple firmware upgrades. 
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Digital Signal Processors can handle ample amounts of data and are suited to high 

bandwidth applications. However, wireless sensor nodes rarely need such processing power as 

communication bandwidth is severely limited in order to conserve energy. Therefore, DSPs are 

not an advisable choice for wireless sensor nodes. 

Application Specific Integrated Circuits are designed for a specific application and cannot 

be modified or reprogrammed as their counterparts. Their advantage is relative low cost when 

produced in large volumes, but their lack of flexibility comes as a pitfall.  

CPU Supply 

Voltage [V] 

Power 

Active 

[mW] 

Power 

Sleep 

[μW] 

Sensor 

Node 

8-bit CPU   

ATtiny 13V  1.8-5.5  0.43  1.8   

Atmega1284p 1.8-3.6 0.72  1.26 AVR Raven 

Atmega128RFA1  1.8-3.6  33.48  0.45 Sparrow v3 

Atmega1281 1.8-5.5  0.9  0.18 Sparrow v2  

ATmega128L  2.7-5.5  28  83  Mica, Mica2Dot, Mica2,  

BTnode  

ATMega103L  2.7-3.6  15.5  60  Mica, IBadge  

PIC18LF8722 2.0-5.5  5.6  2.4 GWNode 

PIC18F452  2.0-5.5  40.2  24  EnOcean, TCM  

CC1110 2.0-3.6  44 1.2 Monnit WIT 

16-bit CPU  

MSP430F1612 1.8-3.6  3  15  PowWow  

MSP430F1611  1.8-3.6  3  15 T-Mote Sky  

32-bit CPU   

AT91SAM7x256 1.8/3.6 79.2  46.8  deRFNode 

ATSAM3S4B 1.8/3.6 117 89.2  deRFusb Stick 

IntelPXA255 1.8/3.6 2598 45100  Stargate  

 

Table 1. Power consumption for some common CPUs 

Typical mote CPUs are based on CMOS logic processors which can operate from a low 

frequency range (e.g. 1-100kHz) to 20MHz or more for input voltage levels as low as 1.8V. 

However, high operating frequencies can only be achieved at the cost of higher current 

consumption which typically increases at a rate of 1mA/MHz. With this current consumption 

limitation, the prospect of having a mote run at full capacity for a long period of time is not 

achievable [4]. Therefore, the universally adopted approach to solving this problem is to keep the 

microprocessor and the entire mote in a low-energy mode (e.g. idle or sleep) for most of its life, 

in order to conserve battery power.  
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Most MCUs have an internal timer or an external interrupt line that can be used to 

periodically enter or exit a low-power state. This allows the microcontroller to enter a program of 

alternating sleep-wake cycles that can be periodically executed. All sensor data acquisition, on-

board processing and communication is limited to the wake interval, while in sleep mode, only 

the timer or event system necessary to wake the processor is active. Given the fact that the 

parameters that are typically monitored by a sensor mote are slow-evolving (ambient 

temperature, light, humidity etc.) and the amount of data sent in the network can be limited by 

protocol to tens or hundreds of bytes per minute, the ratio between sleep and wake times in a 

period can be increased to around 99% of the entire period for most applications. 

Typical MCUs used in sensor motes are 8, 16 or 32-bit microcontrollers that run on 

CMOS logic and have reasonable amounts of flash, EEPROM and RAM memories attached 

along with analog circuitry such as ADCs and radio transceivers. Therefore, modeling the power 

profile for such a complex integrated circuit is not a trivial task and is closely linked to the 

current drawn by said circuitry from the power supply or battery.  

The supply current in active mode can be split in two separate components: dynamic 

current, given by the sequential logic and static current. While the dynamic current is a linear 

function of the clock speed and can be summed up by the two terms in the above equation, the 

static current is given by the analog circuitry, memories and leakage currents and is totally 

independent of the operating frequency. 

The complete formula for power consumption of a CMOS logic circuit is: 

 
leakshort VIfAVIfACVP  2

2

1
 (1)  

where P is power, V is the supply voltage, f clock frequency, C capacity of output lines, A 

activity (number of logic transitions per clock cycle), Ileak leakage current, Ishort short circuit 

current and   short circuit period.  

Drain current, while not a big contributor to power loss in CMOS logic, is a few orders of 

magnitude larger for analog blocks and Flash memory, which, at low clock speeds, can drain 

more power than the CPU. Depending on the technology, either one of the two currents can have 

more significance. Dynamic current decreases as integration scale increases, while, at the same 

time, leakage current becomes prevalent, due to having ever larger numbers of transistors per 

chip. Table 1 shows power consumption of the most popular CPU installed in some standard 

sensor nodes [5], [6], [7].  

From the data in Table 1 we can conclude that sensor motes employ all types of 

microprocessors, from 8 to 32-bit architectures. While 4-bit microcontrollers were originally 

used for sensor networking, due to their low power requirements as opposed to contemporary 8 

or 16-bit architectures, modern WSN motes employ mostly 8-bit or 16-bit microprocessors that 

have been specially optimized for low-energy consumption. Most of them feature at least two 

user programmable power states (e.g. sleep and active) and various power management profiles. 
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On average the power consumption for the active mode can range from 3 mW up to 30 

mW, and in sleep mode can decrease to about 10 μW. Modern SNs use 16/32-bit CPU with 

larger number of power down modes, and are intended for multimedia data acquisition (voice, 

image). The power consumption of 32-bit CPUs in active mode is >100 mW.  

1.1.2 Radio Transceiver 
 

Sensor motes employ different types of wireless data transceivers, from ultrasounds and 

infrared to lasers and radio. While lasers have the advantage of range and infrared that of low 

power, radio transceivers have established themselves as standard for wireless sensor networks. 

Almost all radio devices use communication frequencies in free or ISM bands situated from 

433MHz to 2.4GHz.  

An important aspect of integrating a radio transceiver in a WSN mote is taking into 

consideration its power efficiency. Because of their design, transceivers consume almost the 

same amount of power when receiving or transmitting, which is usually three orders of 

magnitude larger than the average energy budget of a microcontroller. In order to conserve 

battery capacity, transceivers usually have one or two low-power states (idle or sleep) which 

allow them to remain dormant and be turned on quickly in case of data reception or transmission. 

Type Frequency  Rx  

power  

Tx 

power  

Status -Power 

down  

 [MHz] [mA] [mA] [μA] 

nRF8001  2400 13  14.5 2 

nRF24LU1+ 2400  12.9 11.1  480 

nRF905  433/868/915  12 9  2.5 

CC1000  315/915  10  17  1  

ADF7020-1 433-434  17.6 21  1 

CC1010 315/433/915  11.9  10.4  29.4 

CYWUSB6934 2400  69.1 57.7  0.24 

MC13192 2400  30 37  500 

nRF2401  2400  18 10.5  0.4  

AT86RF230 2400  16.5 15.5  0.02  

AT86RF231 2400  12.3 14  0.02 

AT86RF232 2400 11.8 13.8  0.4 

AT86RF212 868  9.2 17 0.2 

STD302N-R  869  28  46/0   

MC13191/92  2400  37  34/0  1  

ZV4002  2400  65  65/0  140  

Table 2. Power Consumption for Radio Transceivers Commonly Used in WSN Motes 
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The mote radio transceiver circuit enables communication with other motes and to data 

sink nodes, such as gateways. Depending on several factors, such as modulation, transmit power, 

transfer rate and duty cycle, a wide range of radio communication circuits is available on the 

market. Table 2 shows some of the most commonly employed radio transceiver chips in sensor 

motes [5], [8], [9]. 

From the data transmission and power consumption point of view, transceivers can be 

configured to operate in one of the following states: 

 Shutdown – the transceiver is off and only consumes power due to leakage current. 

Returning from this state to operational may take a long time (~ms). 

 Sleep/ Standby – the mote is in a low-power state where its consumption is low and can 

return to full functionality very fast. 

 Listen – the radio is in Rx state, where it listens for any incoming data packets. Due to 

this fact, power consumption is higher than previous modes. 

 Transmit – radio circuits are in the Tx state. Power consumption is dominated by the 

RF amplifier stage.  

Data in Table 2 has been compiled with radio transceivers that use the three most 

common ISM bands for sensor networking: 433.05 – 434.79 MHz, 902 -928 MHz and 2400 – 

2483.5MHz. Radio modules have been classified by their power rating in Rx mode, due to the 

fact that in a typical application receive is prevalent over transmit by a ratio of almost 1000:1. 

The first class has a current consumption of less than 10mA, the medium-power group has a 

current rating between 10mA and 50mA and high-power modules consume more than 50mA. 

1.1.3 External Memory 

In most sensor motes, memory is present only as the microcontroller’s on-chip Flash or 

RAM or, in some cases as external Flash. Memory resources for a node tend to be scarce due to 

costs and most applications even tend to minimize memory allocation due to the high energy cost 

of writing and reading data. Allocation is typically made with respect to data purpose, with 

separate segments for program memory and for user data or device identification. 

Chip Code Type Capacity Power 

Active 

[mA] 

Power 

Sleep 

[μA] 

AT25F512B-SSH-B Serial Flash 512Kb 6 5 

SST25VF020B-80-4I-QAE Serial Flash 2Mb 20 20 

SST25VF020B-80-4I-QAE Parallel Flash 512Kb 5 1 

FM21L16-60-TG FRAM 2Mb 8 90 

24AA01-I/SN EEPROM 1Kb 1 1 

24FC512-I/SM EEPROM 512Kb 5 400 

23K256-I/P Serial SRAM 256Kb 3 4 

IS62C1024AL-35TLI Parallel SRAM 1Mb 25 5 

Table 3. Current consumption for typical on-board memories for WSN sensor motes 
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 Due to their high cost and especially their high power consumption, external memory 

chips are less pervasive in wireless sensor nodes. Most of the memory space required by the on-

board processing is allocated on the microcontroller’s internal memories, which does not impose 

an additional cost to the whole system. 

1.1.4 Power Supply 
 

Power consumption in a sensor node is shared between the microcontroller, the sensors 

and the radio transceiver, with the latter accounting for almost the entire node energy budget. It 

is estimated that the cost of transmitting 1Kb of data over a distance of 100m is approximately 

the same as that of executing 3 million instructions on a low-power processor. 

There are two energy storage technologies available for wireless sensor nodes: 

conventional batteries and super-capacitors.  

Due to their low-power architecture and low cost, most sensor motes employ batteries as 

a primary energy source. Energy harvesting has also become a major trend in wireless sensor 

systems. Even if the amount of energy claimed from the environment is not significant, it can 

help extend the mote’s battery life or, in some cases, even ensure perpetual functioning. Super-

capacitors have also been employed as alternative storage elements, but their low energy density 

and high costs compared to that of batteries have not made them enter widespread use.  

Batteries are electrochemical cells that store electrical charge via a chemical reaction. 

There are many types of batteries that use different types of chemistries, have different energy 

storage capacities and a wide range of sizes and costs. Therefore, not all batteries are suited to 

being used for powering a wireless sensor mote and certain features must be sought when 

choosing a good battery [10]: 

 high energy density; 

 large active volume out of the total packaging volume; 

 low voltage per cell (0.5 – 1.0 V) so digital circuits can take advantage of the quadratic 

reduction in power consumption with supply voltage;  

 ease of configuration into series batteries to provide a variety of cell potentials for 

various components of the system without requiring the overhead of voltage converters 

 rechargeable, in case the system has an energy harvester. 

Most battery chemistries used by wireless sensor motes fall into three categories: Nickel-

Metal Hydride (NiMH), Lithium Ion (Li-Ion), and Lithium Polymer (Li-polymer).  

All batteries have parameters such as voltage, charge cycles, energy density, charge time, 

maximum load current and discharge rate and they differ from one chemistry to another. 

Although all three battery types are well suited for use in wireless sensor networks, their unique 

characteristics can make one group more suited to a specific application. Finding the right choice 

is a process that involves knowing all application parameters and requirements, a process that 

very often boils down to finding the correct balance between price and performance. 
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The most relevant battery parameters are given in Table 4[12].  

Type Voltage Energy 

density 

Specific 

energy 

Self discharge 

 [V] [Wh/dm
3
] [Wh/kg] [percent/month] 

Lead-acid  2.0 V  60-75  30-40  3-20% 

Nickel Cadmium  1.2 V  50-150 40-60 10% 

Nickel Metal Hydride  1.2V  140-300  30-80 30%  

Lithium-Ion  3.6 V  270  160 5% 

Lithium-polymer  3.7V  300  130-200 1-2%  

Table 4. Battery Types 

The following gives a short presentation of each cell chemistry characteristics: 

Nickel-Metal Hydride (NiMH): nominal voltage per cell is 1.25 V and nominal charge 

capacities (C) range from 1100 mAh to 3100 mAh for standard AA cells. Useful discharge 

capacity is a decreasing function of the discharge rate, but up to around 1×C (full discharge in 

one hour), it does not differ significantly from the nominal capacity. Rechargeable batteries 

usually have 500 duty cycles per lifetime and less than 0.5 C optimal load current. Typical 

specific energy for NiMH AA cells is about 100 Wh/kg, and for other NiMH dry cells about 

75 Wh/kg (270 kJ/kg), compared to 40–60 Wh/kg for Ni-Cd. Charge time can be up to four 

hours and they also exhibit a discharge rate of approximately 30 percent per month when in 

storage. NiMH Battery systems excel when lower voltage requirements or price sensitivity are 

primary considerations in cell selection. NiMH Systems can be configured with up to ten cells in 

a series to increase voltage, resulting in a maximum aggregate voltage of 12.5 V [11].  

Lithium Ion (Li-Ion): Over the past years, Li-ion batteries have become widespread, largely 

due to lowering production costs and higher performance compared to NiMH. A Li-ion cell has a 

nominal voltage of 3.6 V and can offer around 1000 duty cycles per lifetime. Their average 

energy density is around 160 Wh/kg, which is almost two times greater than that of NiMH 

batteries of similar capacity. Their charge time is also reduced to less than four hours and typical 

discharge rate is approximately ten percent per month when in storage. These characteristics 

make Li-Ion battery systems a good option when requirements specify lower weight, higher 

energy density or aggregate voltage, a greater number of duty cycles, or when price sensitivity is 

not a consideration. Li-Ion battery systems can be configured up to seven cells in series to 

increase voltage, resulting in a maximum aggregate voltage of 25.2 V [11].  

Lithium Polymer (Li-po): Li-polymer cells have similar performance characteristics when 

compared with Li-Ion cells, but have the advantage of being packaged in a slightly flexible form. 

However, this flexibility is often misleading, as Li-polymer cells should remain flat when 

installed in a device, not even bending for installation in the battery system. Characteristics of 

Li-polymer cells include a nominal voltage of 3.6 V, 500 duty cycles per lifetime, less than 1 C 

optimal load current, an average energy density of 160 Wh / kg, less than four-hour charge time, 

typical discharge rate of less than ten percent per month when in storage, and a semi-rigid form 

http://en.wikipedia.org/wiki/Milliampere-hour
http://en.wikipedia.org/wiki/Specific_energy
http://en.wikipedia.org/wiki/Watt-hour
http://en.wikipedia.org/wiki/Nickel-cadmium_battery
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factor. Li-Ion cells can be configured up to seven cells in series to increase voltage, resulting in a 

maximum aggregate voltage of 25.2 V [11].  

1.1.5 Sensors 

Sensors or transducers are the main sensing element of a wireless mote. They are 

responsible for converting a physical parameter like temperature or humidity into a measurable 

output that can be digitized and further processed by the node’s circuitry. 

Due to design constraints, the sensors that are suitable for a mote need to be small in size, 

low on consumed power and adapt to the environmental conditions. Also, in order to be 

deployed in large numbers, sensors need to have a low cost and must operate in high volumetric 

densities without interference. 

Sensors can be classified into three categories: 

 Passive, Omni Directional: Passive sensors gather input by monitoring their 

surrounding environment without modifying it. Usually, passive sensors require only 

little power and exhibit no preferred sensing direction (e.g. temperature or humidity). 

 Passive, Highly Directional: These sensors measure the requested parameter from a 

specific area or volume and thus, have a sense of orientation or direction. A good 

example for such a sensor is a video camera or a directional microphone. 

 Active: These sensors actively measure their environment by sampling or modifying 

their environment, for example radar induces radiation into an environment in order to 

sense its shape. 

The vast majority of sensor nodes use only Passive Omni-directional sensors due to their 

low cost and low energy demands. Each of these sensors has a given coverage area for which it 

can accurately report the measured parameter values.  

Sensors give motes the ability to measure physical parameters from the surrounding 

environment and translate them into data. Although there is a wide array of sensors that can 

measure parameters like temperature, humidity, light intensity, various gases, air flow, acoustic 

noise, proximity etc., not all of them are suited for deployment inside a wireless mote. 

From the power consumption point of view, there are three major factors [13] that affect 

battery life: analog-digital conversion, signal conditioning circuitry and sampling and conversion 

As sensor motes are usually small in size and have hard power consumption constraints, 

certain issues must be taken into account when selecting a suitable sensor and designing the 

interface circuitry: 

 Power consumption 

 Size 

 Power cycling capabilities 

 Compatibility with other circuits in the system 

 Environment interface 
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Table 5 lists the power consumption of some common of-the-shelf sensors [5], [14].  

 

Sensor  

 

Type 

Power 

consumption 

[mW] 

micro-power  

MCP9700 Temperature  0.018 

MCP9501PT Temperature Switch  0.075  

MPL115A2T1 Barometric Pressure  0.016  

MMA8452QT Accelerometer  0.1  

MPR084Q Proximity 0.082  

SHT21 Temperature/Humidity  0.48 

LIS302SG Accelerometer 0.625  

MCP9501PT Capacitive Touch  0.01  

BH1621FVC  Light sensor  0.231  

RE46C190S16F Smoke Detector 0.005 

low-power  

FSS1500NGT Force Sensor  5  

IRA-E700ST0 IR Motion Detector  2 

SL353HT  Hall Effect 1  

HMC5843  Digital Compass 1.62  

medium-power  

ADXRS450BEYZ Gyroscope  30 

OV7649  CCD  44  

high-power  

34L 8D 103 W03263 Linear Position 125 

FS5.0.1L.195 Gas Flow  900 

EM-005  Proximity  180  

S51-PA-2-C10-PK Distance 350 

OPB350W250Z Level  200  

IT321 GPS  110 

TDA0161  Proximity  420  

ultra high-power  

FS22 Water Flow Meter 15000  

FR20-RLO-PSK4 Distance Meter 2000  

BSP B010-EV002 Pressure  10000  

Table 5. Power Consumption for Sensors Commonly Used in WSN Motes 
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Depending on sensor type and accuracy, power consumption can vary significantly, from 

low-power passive sensors, like accelerometers, temperature light and humidity sensors, to high-

power transducers like ultrasonic level meters, digital imagers or industrial-grade pressure 

sensors, where power consumption can be one or two orders of magnitude higher than that spent 

by the radio transceiver. 

Surveyed sensors presented in Table 5 were classified into five categories:  

 Micro-power: power consumption is less than 1mW and their duty cycle can easily be 

changed through software. 

 Low-power: less than 10mW of power and usually offer some sort of on-chip signal 

processing and conditioning. 

 Medium-power: from 10mW to 50mW and can incorporate more extensive analog 

circuitry. 

 High-power: have incorporated signal processing and standardized analog and digital 

interfaces. Power consumption for this group ranges from 50mW to 1W. 

 Ultra high-power with a power consumption of more than 1W. They are usually 

unsuited for deployment on battery-powered motes, due to their high power 

consumption, but can easily be incorporated on a mote that is linked to the power grid 

or has some means of energy harvesting, such as photovoltaic panels. 

1.2 Sensor Network Firmware 
 

Hardware limitations give rise to specific software aspects. Software running on WSN 

nodes must be power-aware. Ideally the microcontroller spends most of the time in very low-

power sleep states, and the radio transmits data in small bursts. Some radio chips used on WSN 

nodes draw more current when listening for data than when transmitting, therefore special low-

duty-cycle communication protocols and algorithms are ideally employed, such that the radio is 

completely off most of the time. Although all the nodes in a WSN can share a radio channel, due 

to the low transmitter power only nodes in close proximity can communicate. From a software 

standpoint this is both beneficial (no interference between nodes spaced far apart) and 

problematic (the need for multi-hop data routing arises). 

Traditional wired sensor networks usually employ one or more master nodes with 

generous hardware resources and energy available, such as a PC-type computer, therefore data 

processing usually happens on the master nodes. Wireless sensor nodes on the other hand are 

more autonomous because of the limited communication capacity between sensor nodes and 

master nodes. In some cases WSNs are purely peer-to-peer networks, lacking master nodes 

altogether. WSNs can perform data processing and aggregation inside the network, reducing the 

need to centralize large amounts of data. Given the fact that processing data on the nodes and 

forward the results between them can be energetically cheaper and more reliable than sending all 
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the raw sensor data to a central node, advanced WSNs function as distributed processing 

systems. 

Wireless Sensor Networks are subjected to severe constraints which are typically 

application-dependent. Constraints usually fall in, but are not restricted to, categories such as 

size, number of nodes, energy availability and processing capabilities. However, the prevailing 

constraint in almost all sensor network applications is network autonomy, that is, the network 

should be able to organize, manage and repair itself with minimum or no need for human 

intervention. 

In order to increase network autonomy, each component should be autonomic by itself, 

which is to say that sensor nodes need to have independent management capabilities for 

supervision and control over their resources.  Such a manager should enable services for 

monitoring, analyzing, profiling and executing different application modules or tasks. 

Network management systems should take into consideration the following requirements:  

 Self-healing: detect and recover from failures or network attacks. This could be 

implemented at node level or as a service for the whole network. Modules that employ 

self-healing algorithms need to detect malfunctions or failures and apply a pre-

established policy in handling them. This also applies to other exceptional states, such 

as network attacks or intrusions. The system should be able to cope with the failure and 

devise a strategy to reschedule tasks or reroute traffic in order to keep functioning.  

 Self-configuration and maintenance: the network should adapt its parameters and 

respond to changing conditions in its surrounding environment. Typically, 

configuration is one of the first steps during network installation and can become very 

cumbersome if done manually for a large scale network of thousands of nodes. 

Therefore, the network should have at least a minimum of built-in self-configuration 

strategies that would enable it to achieve such actions as sensor calibration, network 

discovery, authentication and joining, network role assignment etc. Another important 

aspect of self-configuration is the node’s ability to apply the same policies during its 

entire lifetime and respond to other factors, such as dynamic workload changing, 

energy-aware quality of service or ensuring that specific actions are done in a timely 

fashion. 

 Self-awareness: enables the sensor node to discover and learn about its surrounding 

environment in order to fine-tune its behavior. Better understanding of these parameters 

can greatly improve node and overall network lifetime by altering its behavior in 

accordance to certain external or repetitive stimuli (e.g. knowledge of day-night cycles 

for a solar harvesting node or on how external temperature affects battery storage 

capacity). Such predictable and cyclic phenomena can lead to establishing rules on how 

to manage nodes inside a network or how to govern the interactions between them. 

To sum up the above features, for a sensor node to be autonomous, it must implement three 

distinct tasks that need to run on a periodic basis: 
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-Monitor: features means of gathering data and process it from a managed resource. Such data 

can be related to energy status, bandwidth limitations, throughput, configuration parameters, 

neighbor advertisements and topology etc.  

-Analyze: this function provides an algorithm on how to modify functionality depending on 

input gathered from the previous module, while respecting the predetermined role each node has 

been assigned. It can also be used as a predictive tool, to change node behavior in anticipation of 

certain exceptional events or to plan functionality depending on a given schedule.  

-Execute: is the next step in the program while loop. It must run a given plan with consideration 

to the rules set by the previous module and also take into account any dynamic updates that 

might arrive from the network coordinator. 

From a user's standpoint, a WSN must provide a number of services, such as reporting 

events of environmental pollution, reporting the formation of traffic jams in a city, identifying a 

person's urgent health problem, managing the air conditioning and lighting in a building, 

etcetera. There is no need for the end-user to receive real-time data from all sensors in the 

network, but only information that is relevant. Service-oriented WSNs use this approach - the 

nodes run software services that read and process large amounts of sensor data, as well as user 

commands, and send small amounts of relevant data back to the user, thus utilizing the radio 

channel efficiently. Service frameworks such as the Tiny Task Network (Titan) define tasks 

(services) that have a number of input and output pipes. The tasks are assigned by a scheduler to 

the available network nodes according to the node location, available sensors and actuators, node 

processor load and radio link quality, and the tasks' pipes are linked according to a service graph. 

More tasks can run on the same node, exchanging data through local pipes, or pipes can be 

connected between nodes. Tasks could also be moved between nodes in order to increase 

efficiency or in the event of a node or link failure. This functionality is transparent to the tasks. 

From a software developer's standpoint, obtaining the lowest possible power consumption 

and the highest data link reliability is of significant importance. The engineer needs to be able to 

monitor the performance of the system when developing and testing software for WSN nodes. 

Indicators such as processor and memory load, wakeup frequency, duration of high-power states, 

amount of data sent and received over the radio, are important to the software engineer. These 

parameters need to be known for all network nodes. Higher-level, service-specific parameters, as 

well as lower-level parameters such as radio link quality, are also important for the scheduling 

algorithms in service-oriented networks and for self-healing or adaptive routing algorithms. Raw 

sensor data also needs to be monitored when debugging data processing software or when 

configuring the network after installation. Also, some simple applications only require obtaining 

periodic sensor readings on a central computer. Network administrators and users may also be 

interested in monitoring the health of the WSN nodes (such as the remaining battery charge), 

sensor data or performance metrics. 

WSNs whose nodes are in inaccessible locations or spread over a large area clearly 

require software provisions to allow remote monitoring, without the need for physical access to 

the nodes. Even when WSNs occupy a small area and their nodes are easily accessible, 
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connecting a dedicated debugging interface to the nodes can be cumbersome and expensive 

when the nodes are in large numbers. 

When using a WSN or when developing software, the user must also be able to control 

the network. Setting application-specific software parameters, controlling actuators directly, 

enabling and disabling services, upgrading the software running on the nodes are examples 

where control of the WSN is necessary. 

Many real-time operating systems and network protocol stacks can run on WSN nodes, 

such as TinyOS, Contiki [15], Sensinode NanoStack, etc.  

1.2.1 Wireless Sensor Network Protocols 
 

A large number of industries benefit from reliable wireless sensor and actuator networks 

and a lot of effort has been made in the past years to develop WSN standards and protocols that 

address many of the constraints and problems mentioned in the previous section. 

Out of these protocols, there are two that have garnered widespread adoption and use. 

Because of their low power specifications, we also consider them suitable in our research. 

1.2.2 The ZigBee Protocol Stack 
 

The Zigbee protocol stack (Figure 4) builds upon the IEEE 802.15.4 standard [16] that 

specifies the characteristics of the physical (PHY) and medium-access control (MAC) layer for 

low-rate personal area networks (PANs). The radio transceiver of a ZigBee device thus applies a 

direct-sequence spread spectrum (DSSS) scheme to transmit data at a rate of 250 kb/s if the radio 

is operated in the 2.4 GHz frequency band, and the MAC controls the access of the network 

nodes to the radio channel with an unslotted CSMA/CA protocol or, optionally, with a slotted 

CSMA/CA protocol if the network nodes are synchronized.  

The ZigBee Alliance defined the higher layers of the protocol stack, which comprise the 

network (NWK) layer, an application support (APS) layer, the security service provider (SSP), 

the ZigBee device object (ZDO) and the application objects. The NWK layer is in charge of 

organizing a multi-hop network and routing data packets over it. The network can be organized 

in a star, tree, or mesh topology and is always centrally controlled by the ZigBee coordinator.  

When a tree or star topology is used, packet forwarding is performed with a simple tree-

based hierarchical routing algorithm while, in case of using a mesh topology, a simplified 

version of the ad-hoc on-demand distance vector routing algorithm is applied. The SSP unit 

provides a security service to the ZigBee network, which includes methods for ensuring 

freshness of data, message integrity, network and node level authentication, and encryption.  

The ZDO entity provides the service to discover other devices and application objects in 

the network. The APS layer is responsible for binding together devices based on their service 

needs in order to exchange application messages between them. Finally, the user can define 

several application objects to implement its sensor application. 
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Figure 4. ZigBee protocol stack 

1.2.3 The 6LoWPan Protocol Stack 
 

IPv6 networking over low-power wireless personal area networks (6LoWPAN) is an 

IETF effort to enable IP based networking and compatibility for low-power wireless sensor 

networks. Because of the potential of direct compatibility with the existing Internet 

infrastructure, 6LoWPAN can be viewed as a significant factor in future sensor networks. It is 

also the most profound RFC clearly breaking the OSI layered model and it exploits cross-layer 

information to minimize protocol overhead. The 6LoWPAN effort will undoubtedly have an 

impact because it enables viable network and transport layer solutions for IEEE 802.15.4 type 

wireless personal area networks (WPANs) and it will be used for commercial WS&AN 

solutions. 

Low-power wireless personal area networks (LoWPANs) comprise devices that conform 

to the IEEE 802.15.4 standard [2]. The 6LoWPAN RFC 4919 [17] gives an overview of 

LoWPANs and describes how they benefit from IP and, in particular, IPv6 networking.  It 

describes LoWPAN requirements with regards to the IP above layers, and spells out the 

underlying assumptions of IP for LoWPANs. The main characteristics of LoWPANs are: 

 small packet size (127 byte physical layer protocol data unit (PPDU)), 

 support for both 16-bit short and IEEE 64-bit MAC addresses, 

 low data rates (250 kbps, 40 kbps, and 20 kbps), 

 star and mesh topology support, 
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 low cost, low power, and inherently unreliable, 

 long sleep periods in many environments. 

As the 6LoWPAN uses IEEE 802.15.4 technology, both full function and reduced 

function devices need to be supported. The application of IP technology is assumed to provide 

the benefits of 

 allowing use of existing infrastructure, 

 proven and open technology, 

 readily available tools for management, diagnostics, and commissioning of networks, 

 direct communications capability with other IP-based networks without a requirement 

for translation gateways or proxies. 

However in order to benefit from the above aspects, problems relating to auto-

configuration, large address space, IEEE 802.15.4 – IPv6 packet constraints, interconnectivity, 

low routing overhead, computational requirements, sleeping, limited management capabilities, 

service discovery, and security need to be addressed. The goals for 6LoWPANs have therefore 

been set according to priority: 

 Provide a fragmentation and reassembly layer below the IP to support IPv6 packets 

(1280 octets) in an environment where the protocol data unit may be max. 81 bytes. 

 Maximise the data portion of protocol data units by efficient header compression. 

 Create IPv6 stateless address auto-configuration to reduce configuration overhead. 

 Provide a routing protocol to support a multi-hop mesh network taking packet size 

constraints into account.  Routing packets should fit within a single 802.15.4 frame. 

 Reuse of existing protocols as much as possible especially for network management.  

 Take into account implementation, application, and higher layer considerations. 

 Take into account small code size, low power operation, low complexity, and small 

bandwidth requirements based security aspects (esp. confidentiality and integrity). 

The RFC 4944 [18] provides a more detailed description on how to transmit IPv6 packets 

over the IEEE 802.15.4 network. The key functionality for this is called the LoWPAN adaptation 

layer, which resides between the IEEE 802.15.4 MAC layer and the network layer supporting 

IPv6.  

An encapsulation header stack prefixes all LoWPAN encapsulated datagrams transported 

over IEEE 802.15.4.  Each header in the header stack contains a header type followed by zero or 

more header fields. Figure 5 illustrates some of the header fields and how they relate to the 

802.15.4 frame format. The destination and source addresses can be used for the mesh routing 

within the 802.15.4 network and they include personal area network (PAN) identifiers. If there 

are multiple LoWPAN headers in the same packet the must appear in the following order: mesh 

addressing header (mhop), broadcast header, and fragmentation header (frag) of Figure 5. 

The dispatch (dsp) header begins with bit combination (01) followed by a 6 bit selector, 

which identifies the type of header immediately following it. In the case of Figure 5, the field 

would indicate (000010) corresponding to LOWPAN_HC1 (HC1) compressed IPv6 header.  
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Figure 5. 6LoWPAN header format (Arch Rock Corporation [19]). 

The mhop header begins with (10) followed by 1-bit ―V‖ and ―F‖ fields. The fields 

indicate whether the originator and destination addresses are 64-bit (0) or short 16-bit (1) 

addresses, respectively. A 4-bit field indicating the number of hops left follows them.  

The frag header begins with (11) and is only present if the datagram does not fit into a 

single IEEE 802.15.4 frame. The first fragment starts with (000) bit field and contains the 

datagram size and tag. The subsequent fragments begin with (100) and contain the datagram 

offset in addition. Note that the datagram fragments do not need to arrive in order. 

The common compressed header encoding HC1 is the key enabler of IPv6 over 

LoWPAN. With the help of HC1, the only IPv6 header that always needs to be carried in full is 

the Hop Limit (8 bits) field; often all the other necessary fields can be inferred from the rest of 

the frame. Use of HC1 is made possible by utilization of stateless address auto-configuration, 

defined either by RFC 2464 [20] or by link local addressing defined by 6LoWPAN. 

Similarly, parts of the next header fields (UDP, TCP, ICMP) can be deduced from 

information available elsewhere in the frame. For UDP, only the length field can be deduced. 

Some of the non-deductable information can be compressed however reducing the UDP header 

up to 4 octets at best. 

The method of derivation of Interface Identifiers from IEEE 64-bit MAC addresses is 

intended to preserve global uniqueness when possible. However, there is no protection from 

duplication through accident or forgery. A sizeable portion of IEEE 802.15.4 devices is expected 

to always communicate within their PAN (i.e., within their link, in IPv6 terms).  In response to 

cost and power consumption considerations, and in keeping with the IEEE 802.15.4 model of 

reduced function devices (RFDs), these devices will typically implement the minimum set of 

necessary features.  Accordingly, security for such devices may rely quite strongly on the 

mechanisms defined at the link layer by IEEE 802.15.4.  
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Chapter 2  

Wireless Sensor Network 

Classification 
 

 

Applications involving WS&ANs are very diverse which proves the fact that behind the 

term lie hidden a large range of requirements for supported services, topologies, deployment 

nature, lifetime, etc. Therefore, in the aim of defining generic components and requirements for 

WS&AN islands, it is worth categorizing them into a few classes spanning a set of common high 

level features and requirements. The set of generic classes is thus tentatively defined so as any 

application involving WS&ANs will either require a single class or will be decomposable onto a 

set of these classes. 

We identified three generic WS&AN classes: 

 Environmental Sensor Networks (ESN): mainly large scale, with severe lifetime 

requirements 

 Community Sensor Networks (CSN): mainly medium scale, attached to infrastructures 

like buildings to serve a given user community 

 Body Sensor Networks (BSN): mainly small scale, attached to persons and moving 

along with them 
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2.1 Environmental Sensor Networks  

2.1.1 ESN Description 
 

Environmental Sensor Network’s purpose is strictly connected to the site they are 

deployed in: their main functionality is that of monitoring scenario properties by collecting 

sensor readings and reporting them back to a central server. Additionally, ESN can include 

actuators in order to realize control loops: for instance a typical application is that of monitoring 

ground humidity to activate the irrigation system when needed. 

ESNs can be deployed in a large variety of different deployment sites and can run a 

multitude of application, hence their sensor nodes shows very different configuration. Also, it is 

not possible to define the typical installation environment for ESNs: in fact, they can be 

exploited for building integrity monitoring, as well as for agricultural management applications. 

Environmental monitoring is among the earliest applications exploiting wireless sensor 

networks. In fact, the challenges to be tackled in this scenario are multiple: the network size may 

be very large, nodes may be placed in locations which are difficult to reach, power supply may 

be difficult or impossible to provide. Also, these networks must deal with the typical challenges 

of wireless channels (e.g., packet loss, random delay, scalability, etc.). Sensor networks offer a 

solution for this scenario as their main features are: unassisted functioning, energy efficiency, 

and high scalability. The main purpose of a monitoring sensor island is to collect environmental 

data in an energy efficient manner while reporting it to one or more central control entities.  

Environmental Sensor Networks are not only designed to collect data from sensors 

deployed in the area, but they also include complementary functionalities like: providing 

connectivity through the network and enabling distributed services (i.e.: localization, event 

detection, etc.). 

Usually, ESNs are organized hierarchically and consist of three types of devices: 

Resource Limited Nodes (RLN), router nodes and data gathering and processing point(s). 

Resource limited nodes are the most numerous entities of the network; their main goal is to 

monitor one or more environmental parameters, they are equipped with low power radio 

interfaces (such as IEEE 802.15.4), a limited power supply (which may be scavenged) and 

minimal computational resources. 

Routers are equipped with both a more sophisticate radio interface (more reliable, larger 

bandwidth, more energy consumption) and with the RLNs low power radio interface. In addition, 

routers have a longer lifetime (either due to more capable batteries or to power connections). 

Routers are also in charge of connecting RLNs to the external world (often to an IP based 

network, where the data gathering point(s) reside) other than locally managing the network. In 

the following, with the term sensor cloud we mean the set of RLNs referring to the same router, 

and to sensor island as the set of sensor clouds managed by the same data gathering point. 

The gathering point is usually the entity governing the sensor island in its entirety; it 

collects sensed data through routers, it issues commands to single (or groups of) RLNs and 
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performs global operations on the network such as configuration procedures, reprogramming, 

integrity check and so forth. 

Figure 6 depicts the network architecture. The three-tiered structure consists of the data 

gathering point, a set of routers (center of the figure) and many RLNs (third tier on the bottom 

part of the figure). Each router is in charge of managing a single sensor cloud, however, a RLN 

may belong to multiple sensor clouds. This allows for some redundancy, which increases 

robustness in case of device/link failures. 

The number of RLNs belonging to the same sensor cloud may vary with the density of 

RNs: as an example networks with many routers will likely have a low delay figure (and better 

performance in general) and high installation cost, while a limited number of routers will lead to 

a cheaper installation at the same price, however, exhibiting worse performance. 
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Figure 6. A typical deployment diagram of ESN. SC are sensor clouds, each containing a number of 

RLNs e.g., sensors and actuators. Router nodes (RN) are in charge of connecting sensor clouds to 

the data gathering point (DG). 

 

In terms of security, for ESNs typically cheap sensors without any protection 

mechanisms against physical attacks are more likely to be found. An ESN contains a large 

number of sensor nodes so that a higher price of a single node will add up a significant additional 

cost to the whole WS&AN. It may however be assumed that some vulnerable nodes such as RN 
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or DG are tamper protected. Moreover, an ESN is likely to be deployed in a public, untrusted 

environment and physical tampering with nodes might therefore occur unnoticed. Those facts 

lead to a high vulnerability of ESNs to physical node compromise. 

2.1.2 Resource limited nodes 
 

As mentioned above, resource limited nodes are characterized by low-power radio 

interfaces and scarce energy supply. This, in turn, leads to low bit-rates, unreliable 

communication and the need for energy-efficiency in every performed operation. 

The main operations performed by RLNs are: sensing and reporting data, operating an 

actuator, performing simple on-board processing (e.g., data aggregation and distributed 

algorithms), and forwarding packets. The RLNs belonging to the same network cloud may be 

heterogeneous in terms of computational power, energy supply and allowed operations. Here, we 

envision four types of RLNs: simple sensors, actuators, forwarders and hybrid. The last case 

indicates nodes having multiple capabilities (e.g., forwarder and actuator). The forwarding 

capability is needed when the network spans over multiple hops, and thus multi-hop routing is 

mandatory for connectivity support. Note that a single node can act both as an actuator and a 

sensor as long as a feasible schedule exists for the two tasks and the energy reserve of the node is 

sufficient.  

2.1.3 Router Nodes 
 

Routers are more powerful devices than regular nodes in terms of communication 

bandwidth, processing power and energy supply; their main objective is that of connecting RLNs 

to the external world. Communication between RLNs and routers is performed with the low-

power radio, while communication between RNs and the data gathering point uses the most 

reliable connection available. 

After the network is deployed, an automatic procedure associates each RLN with one or 

multiple routers (according to which a node will be typically associated with the closest router). 

In addition, during the discovery phase, a RLN can also maintain a backup router (i.e., to quickly 

recover from a loss of connectivity). When the discovery procedure ends, each router can store 

topology/connectivity information about its sensor cloud; this allows for the implementation of 

simple routing techniques such as source routing. However, should mobility be an issue of the 

environment, dynamic organization and routing protocols can be exploited to maintain the 

connectivity. 

The main duties of sensor node routers are:  

 collecting data from sensors,  

 forwarding commands to actuators,  

 configuring sensors,  

 re-tasking network protocols,  
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 reprogramming RLNs  within its own sensor cloud,  

 updating its knowledge about the network topology/connectivity  

 reporting malfunctions.  

Routers can communicate with each other in order to check the condition of boundary 

nodes or cooperatively process the collected data (this can also be done at the data gathering 

point).  

2.1.4 Data gathering points  
 

One or more central gathering points are in charge of controlling the sensor island. If 

more gathering points are present, they should communicate with each other to maintain 

consistency among issued commands. This is useful in case of broken links.  

In addition, data gathering points provide high level services to the system. In fact, they 

can act on behalf of any network node and they can combine together raw resources (e.g., sensor 

readings coming from different network clouds) to provide advanced resources (e.g., context 

dependent services). 
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High Level Domain

Local Domain
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Core Network

 
Figure 7. Example of a ESN, showing the main devices involved and the connection between them 

 

If gathering points implement a standard resource interface, they are named End-Point 

Servers (EPSs); they can also include functionalities of a Processing Server (PS, to combine and 

process raw resources), a Resource Directory Server (RDS, keeps a list of available resources, 
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including pointer to their description, location and status) and a High-level Interface Server (HIS, 

to interface user’s applications to the framework). 

Figure 7 shows a possible deployment of an ESN: three local domains are present, each 

with both an End-Point Gateway (EPG) and an RDS. A high level domain connects the other 

three providing high level functionalities like HIS, PS, and RDS by means of a central station. 

2.1.5 Environmental Sensor Network Features  
 

In the following we identified the distinctive features characterizing the ESN class. 

 Network Size. An ESN is composed of a hundred up to few thousands nodes. The 

resulting topology can include many hops and in many cases are organized hierarchically. The 

typical size of an ESN imposes highly optimized design solutions on the whole protocol stack. In 

particular, routing algorithms should be able to establish very long communication paths (10-20 

hops). 

 Difficult access. Due to their typical dimension, environment and configuration, ESNs 

require that their nodes can function properly without any human intervention. Due to nodes 

inaccessibility (or very high access costs), remote management functionalities are to be provided.  

 Connectivity. ESNs can be exploited to provide limited connectivity to other 

neighboring networks, typically BSNs. Typical ESN connectivity consists in a data gathering 

protocol coupled with an interest dissemination tool in order to manage traffic to and from nodes 

and the central station. However, ESN can also be exploited to provide connectivity to 

neighboring BSNs. In such a case, communication protocols should be able to differentiate 

traffic types and adapt to topology changes. 

 Low processing capabilities and memory size. ESNs are not required to support high-

level operation and/or data stream. ESN nodes are generally equipped with very simple 

processing units. This impacts the possibility of realizing complex operation within the network. 

Also, memory limitation reflects on the quantity of data that can be cached in a node, thus 

affecting algorithm design. 

 Delay tolerance. ESNs are subject to different level of delay tolerance, which depends 

mainly on the network objective. Since delays are subject to application needs they can be 

computed at design time and, as a consequence, protocol can be tuned accordingly. However, 

ESN objectives can vary with time (e.g., a change of the priorities or the needed accuracy of the 

monitored parameters), hence objective-oriented solution can save the day by adapting the 

network behavior to the different needs of the applications. 

 Energy Management. Nodes in an ESN could not be powered via a power grid; hence, 

they should rely on batteries or scavenged energy. Environment Sensor Network deployment can 
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be realized on very different scenarios: varying from industrial locations, where a power grid 

may be available, to agricultural context, in which energy can be harvested, to extreme 

conditions, where nodes can only rely on batteries. This reflects on the overall design of node 

architecture: power saving modes must be available and exploited depending on the particular 

scenario. 

 Privacy and Security. Data passing through an ESN can range from very sensitive to 

public data. However, in the stricter situations, security has to be addressed with very efficient 

methods, due to the scarce computational capabilities of the nodes. Data managed in ESNs range 

from confidential to public. Hence, a scalable security approach will be necessary in order to 

grant the desired confidentiality level, while keeping the processing and memory needs at a 

minimum. 

 Self-Healing. This is a vital feature for long lasting, reliable networks; in fact, as an 

example, ESN should continue functioning even after that some of their nodes depleted their 

batteries. The impossibility to complete a task should be automatically reported to an operator. 

ESN must operate unassisted, hence a self-healing protocol must be able to correct erroneous 

behavior and adapt to topology/environmental changes. Also, critical situations should be 

promptly reported to operators. 

 Distributed data processing. ESNs are intended for long term monitoring. Therefore, it 

is expected that they will gather large volume of data. To reduce the communication overhead 

and prolong the network lifetime, in-network and distributed data processing mechanism are 

considered as an important functionality of ESNs. Such online and local data processing also has 

advantages with regard to real-time detection of events and errors. To cope with energy 

constraints and reduce communication overhead intelligent aggregation and adaptive sampling 

mechanisms need to be in place. 

 Heterogeneity. ESNs often include various types of sensors and sensor nodes with 

different capabilities. The devised techniques need to account for and cope with this 

heterogeneity. The devised techniques for ESNs need to account for, and cope with this 

heterogeneity. 
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2.2 Community Sensor Network  

2.2.1 Community Sensor Network Description  
 

A Community Sensor Network (CSN) consists of wireless/wired sensors, actuators and 

forwarders. These nodes are usually attached to buildings, static fixtures, or carried by human 

beings. Compared to ESNs, CSNs may be applied in more flexible environments such as in 

shopping malls, supermarkets, gyms, etc.  The application purposes of a CSN in these 

environments may differ dramatically, e.g. its application in a restaurant may mainly manage the 

scheduling/booking system for customers whereas in a supermarket may mainly provide the 

guidance of shopping such as price and location of the goods. A CSN may also usually be 

involved into several environments simultaneously with frequent cooperation between them. 

Nodes (sensors, actuators, and forwarders) in CSNs can vary from resources to 

capabilities. Though such nodes can occasionally be mobile, most of them are usually static and 

attached to buildings though not necessarily indoor. 

In terms of security, CSNs can be similar to ESNs, namely large networks and built up 

from sensors without any protection mechanisms against physical attacks. The probability of 

attack also depends on the environment where the CSNs are deployed. Usually, CSNs will often 

be deployed in partially protected environments, letting the physical danger to nodes be lower 

than in ESNs.  
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Figure 8 A typical deployment diagram of CSN 
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2.2.2 Community Sensor Network Features  
 

The nodes in a CSN can work together to provide a single service, but there may also be 

several different services, which combined provide the required service to a community. The 

main difference to for example an ESN is that the same network can be used by multiple 

different applications by non-connected users in order to aid the operations of a community, e.g. 

a hospital. Figure 8 presents a typical deployment diagram of a CSN. 

The following features of CSNs are identified. These features do not deal with a specific 

CSN scenario. However, they accurately summarize the common characteristics of CSNs.  

 Network Sizes. A CSN is composed of tens to a few thousand nodes. The resulting 

topology may include single or many hops, and in many cases the nodes are organized 

hierarchically. The typical size of a CSN may vary depending on the application scenario. For 

those with a large size, hierarchical topology and longer multi-hop paths need to be supported. 

For small size networks, the connection paths can mostly be single-hop, and flat topologies may 

be applicable. 

 Node Deployment. Nodes (sensors, actuators or forwarders) in CSN are usually fixed 

after being deployed. However the nodes can also be mobile in some selected scenarios. In fixed 

deployment, topology maintenance is not as vital as in mobile sensor networks, though topology 

information still needs to be updated to find out any possible link changes or failures. Therefore 

topology maintenance can be performed occasionally or periodically. The relatively static feature 

of the network nodes makes the topology more stable. Topology maintenance however still 

needs to be performed whenever necessary, as the potential mobility or failure of the nodes is 

still possible. Node failure may occur from time to time. When the deployment of the nodes is 

performed, the scalability of the network needs to be considered. 

 Heterogeneity. CSN can consist of four types of nodes, namely sensors, actuators, 

forwarders and hybrid nodes. Sensors and actuators have limited capabilities and do not usually 

provide packet forwarding services for other nodes. Local connectivity is an exception here, 

since the locally connecting node may depend on a sensor node for enabling the connection. 

Meanwhile hybrid nodes are more powerful nodes and are capable of providing forwarding 

services for other nodes while being sensor/actuator devices themselves. Forwarders are limited 

capable nodes and provide only forwarding services for other nodes, but do not have sensing or 

actuation capabilities. Moreover, since services in a CSN may be provided by different WS&AN 

supplier, capabilities of sensor nodes involved in such services may be different, e.g. some 

sensor nodes may be quite powerful and have several types of sensing devices themselves, 

whereas others may have extremely limited resources and incorporate only one type of sensor. 

Node capabilities need to be considered, especially during the routing design. Those with higher 

capabilities may take more responsibility such as to perform data relay, data aggregation, and 

topology maintenance in case mobility or node failure occurs. Those with extremely limited 
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resources, except its own responsibility, need to take as little load as possible. Energy 

conservation is an important issue. Some nodes in the network may access the energy supply 

from power mains whereas most others are battery driven. Data flows need to be forwarded over 

those nodes with more available energy.  

 Multiple Services Support. CSNs may support multiple WS&AN suppliers. Importance 

of data from these suppliers may be different from one to another. Therefore a CSN should be 

able to support different types of data with various priorities. Different services can co-exist in a 

CSN. Such co-existence in fact separates the network into sub-domains. For example the billing 

system for water, gas, and electricity usually becomes three independent sub-domains though co-

operations between them may occur. Therefore this feature brings the requirement to be able to 

deal with the different service separately and also together whenever necessary. Furthermore, 

different types of data flows may be generated in CSNs. Some services may require data flows 

with higher importance. The priority of such data needs to be addressed. High reliability and 

security need to be guaranteed for these data flows. Some others may be not so important and 

can be aggregated to save network resources. For instance, the clients are only interested in one 

simple packet from an area, yet the nodes in this area may generate many forms of data. In such 

cases, data fusion or aggregation can be performed before the data are sent to the gateway.  

 Energy Management. Nodes in CSNs can either be supported by batteries or mains 

power depending on the deployment. Energy supply for the battery driven nodes may be 

extremely limited. Note that while the mains powered nodes are not energy limited, they may 

still be constrained with respect to processing cost. A CSN consists of nodes with different 

resources. The lifetime of nodes with extremely limited energy resources needs to be efficiently 

prolonged. The selection of the protocol stack being used needs to consider allocating load 

evenly according to node resources to prevent any premature node energy exhaustion.  

 Gateways to Future Internet. A CSN can be connected to the future Internet via single 

or multiple gateways. Access to the Future Internet via gateway requires the gateway nodes to 

have the necessary functions, like AAA, in order to have the necessary access control. Such 

features also require considering the security issues if necessary.   

 Connectivity to other Islands. CSNs can be exploited to provide limited connectivity to 

other neighboring networks, typically BSNs. This is called local connectivity and it is an 

important characteristic in various applications. Cooperation between different WS&AN islands 

needs to be addressed. Cooperation means to share the information if necessary, to route data for 

other services or node, and to share the resources if necessary.  

 Privacy and security. Since a CSN can support multiple service types, data passing 

through the network may vary from very sensitive to public data. Therefore the level of security 

will also vary depending on the service or data type. Data passing through CSNs range from very 
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sensitive to public. To grant the desired confidentiality level of these data flows, a scalable 

security approach will be necessary. 

2.3 Body Sensor Networks  

2.3.1 Body Sensor Network Description  
 

A Body Sensor Network (BSN) consists of wired and/or wireless sensor and actuator 

nodes used in close proximity to or within the human (or animal) body. Network nodes may be 

carried in the hands or pockets, integrated in garments worn, or attached or implanted into the 

body. BSNs can form individual sensor and actuator islands around their body. 

The devices that participate in a BSN have a wide range of capabilities. While mobile 

phones or PDAs constitute the high-end side and additionally provide connectivity to other 

networks, most nodes will be tightly integrated into garments or implanted into the human body, 

necessitating minimal physical size and thus providing only very limited processing and energy 

capabilities. 

A BSN consists of relatively few sensors, such that tamper protection of all sensors might 

be available at reasonable costs. Also the fact that the BSN is worn on the body reduces the 

possibility of attackers to physically tamper with the nodes. Nevertheless, the possibility of a 

malicious sensor should not be easily excluded and active or passive attacks on the network 

remain a possibility. 

2.3.2 Body Sensor Network Features  
 

BSNs have some features that distinguish them from the other networks. 

 Network Size. A BSN is composed of single to tens of nodes. The resulting topologies 

include 1-2 hops and in many cases are organized as trees. However, also mesh networks are of 

interest in order to lower total bandwidth requirements. The network stack needs to operate 

efficiently in networks with relatively high density. 

 Wired and Wireless clusters. BSNs might be composed of multiple clusters of nodes 

that are wired, while interconnected using a wireless sensor network. An example would be a 

shirt enhanced by a multitude of wired sensors, which connects to the rest of the BSN via a 

wireless link. Multiple clusters where certain nodes can only be reachable via specific links 

impose routing and addressing problems which need to be solved on the routing layer. 

 Mobility. As people move around, they carry their network with them. Other networks in 

the environment connect and disconnect to/from the BSN, offering their services for the time the 

user passes by. Mobility introduces clusters of nodes which move together and stay connected 

for an extended amount of time. Other clusters may only be available for a short time, needing 
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protocols which can quickly establish links and exchange data between such meeting clusters. 

This introduces a need for caching information, which may be accessed in shorter time than 

figuring out nodes at every request. 

 Gateways to Future Internet. Single nodes, typically a mobile phone carried with the 

user may provide a link to the Future Internet. In the absence of such a link, a BSN may use 

surrounding CSNs to connect. Retaining a link to the Future Internet via gateways with mobile 

networks require mechanism to keep links stable despite changing intermediate nodes. Security 

is especially needed, if the gateway is not part of the local BSN. 

 Heterogeneity and Self-Configuration. BSNs are formed of a wide range of devices 

that may never have seen each other and seamlessly work together. If a user buys a new product 

or picks up something to carry along with him, it should integrate itself into the network and 

provide its special services. Device descriptions must be handled by the local devices with 

possibly very low processing and memory resources – efficient representation of service access 

format is needed. 

 Privacy and Security. BSNs collect much sensitive data, such as long-time biomedical 

measurements. Such data must be protected from unauthorized access and protected when 

transmitted to other entities. Data that is shared with the community may require distinction 

between groups that are allowed access, and others from which it should be protected. Different 

data stored on the BSN needs different levels of security for access authentication and 

transmission. Mechanisms should include automatic mediation for certain data. A BSN collects 

typically personal sensitive information. This makes privacy protection of the data an important 

issue. Protection against falsified information is also relevant, as wrong information might have 

impact on the safety of the network. 

 Energy Management. As network nodes are moving with the user, there is no possibility 

of connecting them to a power grid. Consequently the sensor and actuator nodes need to provide 

their own power sources. Power might be provided by batteries, and nodes could make use of 

some energy harvesting techniques collecting solar or motion energy to replenish their energy 

resources. BSN devices are carried with the user, and may provide charging stations. Devices 

need to be able to run for several days. 

 High data rates. Recognizing human activities requires sampling sensors at high rates, 

e.g. to follow body motions or heart rates. This data may have to be logged for medical 

supervision or can be processed to produce higher level context information, such as the heart 

beat, or abstract motions such as ―walking‖. The network must provide the possibility to transmit 

data at high rates from multiple sources to multiple destinations. This may also require the 

transmission of multimedia content. 
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2.4 Sensor and Actuator Modeling  
 

Several works have been performed in the field of modeling sensors and sensor networks. 

In our survey we have divided them into two main categories, the ones defined by 

standardization entities using XML or text-table values; and others using ontologies. 

There are several industrial standards that aim at unifying sensor interfaces and data 

formats. 

IEEE 1451 [21], a suite of Smart Transducer Interface Standards, describes a set of open, 

network-independent communication interfaces for connecting transducers (sensors or actuators) 

to microprocessors, instrumentation systems, and networks. The key feature of these standards is 

the definition of Transducer Electronic Data Sheets (TEDS) that stores transducer identification, 

calibration, correction data, measurement range, and manufacture-related information, etc. TEDS 

are paper sensor data sheets in electronic form. A TEDS is a text table completely focused on 

describing the capability and characteristics of individual sensors. It does not capture any derived 

semantics from sensor data, nor does it capture how the sensor is used, or parameters such as the 

location, age, or condition of the sensor. 

The ANSI provides a standard data format for Radiation Detectors used for homeland 

security specified in the ANSI N42.42 [22]. The purpose of this standard is to facilitate 

manufacturer-independent format to transfer information from radiation measurement 

instruments to a standard file format for use in U.S. Homeland Security applications without 

reference to manufacturers’ documentation. The purpose of this data is for analysis and storage 

of the radiation measurements. The data may consist of raw or unprocessed data, analysis results, 

device parameters or settings, or other measurements needed or applicable to the further analysis 

or to verify the quality of the results produced by the instrument. This standard does not address 

instrument control, data transmission protocols, or the physical media used for communications. 

The data format is specified using XML schemas. 

Common Chemical, Biological, Radiological, Nuclear (CBRN) Sensor Interface (CCSI)  

[23] is a standard for sensor physical and electronic interfaces including components 

interconnects, power, external connectors, XML communications, a standard basic command set 

and modularity. The goal of the CCSI is to develop a set of common standards that enable CBRN 

sensor interoperability, net centric operations, and ease of integration into command and control 

systems. 

The standard characterizes sensors as packages of capabilities rather than what they 

detect. Following this approach, the sensors are describe in terms of installation (fixed, mobile, 

dismountable, dismounted, personal), power source (facility, platform, internal, external), 

communications characteristics (wired-network, wireless-network, wired-local, wireless-local) 

and usage (constant, periodic, non-periodic, mixed), operation (local, remote, mixed, 

environment (combat, severe, outdoor, indoor) and security (physical, electronic, 

communications). 



36 

 

The main drawback of the CCSI is that is intended to be used in the scenarios and 

existing processes from The US Ministry of in the field of detection, classification, identification 

and notification of CBRN threads, mainly in battlefields. Some of the documentation is not 

intended to be publically available and most of the descriptions values have a very restrictive 

number of alternatives (for example, the sensor environmental characteristics are restricted to 

combat, sever outdoor and indoor). 

The OGC® Sensor Web Enablement (SWE) working group has created three different 

standards for defining encodings for describing sensors and sensor observations: Sensor Model 

Language [24], Transducer Markup Language[25] and Observations & Measurements  [26], 

[27].   

Transducer Markup Language (TransducerML), is a XML based standard for specifying 

a standardized way to exchange raw or pre-processed sensor data. TransducerML is a language 

which will enable the seamless communication of digital transducer data between transducers 

(either a receiver like a sensor, or a transmitter) and processor. In particular TransducerML was 

designed to facilitate interoperability of sensors and sensor processors, fusion of heterogeneous 

sensor data, and the accurate and precise capture of sensor data. TransducerML is a sensor data 

exchange language that allows for the fusion of data at levels not presently achievable (i.e. 

upstream data). It defines a means to capture and describe streaming transducer data for the 

purpose of exchanging and processing raw & processed data from disparate transducers.  

The main features of TransducerML are: 

 Promote interoperability and fusion of all types of sensor data. 

 Automatic association between data in space and time (absolute or relative) from 

sensors on different platforms. 

 One data exchange protocols for all transducers. 

 Facilitate Plug&Play transducers. 

SensorML is defined in XML schemas and can, but generally does not provide a detailed 

description of the hardware design of a sensor. Rather it is a general schema for describing 

functional models of the sensor. It provides a common framework for any process and process 

chain, but is particularly well-suited for the description of sensor and systems and the processing 

of sensor observations. The main features of SensorML are:  

 Sensor and systems descriptions 

 Support for resource and observations discovery 

 Support for processing and analyzing sensor observations 

 Support for geo-location of the sensors and measured data 

 Performance characteristics (accuracy, threshold, etc). 

 Support for specifying how to process sensors measures to derive new information 

In SensorML, all components are modelled as processes. This includes components 

normally viewed as hardware, including transducers, actuators, and processors (which are 

viewed as process components) and sensors and platforms (which are modeled as systems). The 

modeled processes can take input, and through the application of an algorithm defined by a 
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method and parameter values, generate output. All such components can therefore participate in 

process chains. Process chains are themselves processes with inputs, outputs, and parameters. 

Complementary to the SensorML is the Observations & Measurements (O&M) standard, 

since it provides a homogeneous way of representing the measures or observations taken by the 

sensors. 

ZigBee is a communication standard for WS&AN island with a multitude of solutions in 

consumer electronics, home and building automation, industrial controls, PC peripherals, 

medical sensor applications, toys, and games [3]. ZigBee defines application profiles which are 

collections of device descriptions, which together form a cooperative application. For instance, a 

light switch on one physical node communicates with a lamp on another physical node. 

Together, these devices cooperatively form a lighting application profile. Before these related 

(according to the profile) devices send messages they must be bound to each other by a setup 

phase called binding. Each device with potentially multiple onboard sensors and actuators may 

have multiple applications running. To distinguish between applications ZigBee uses the notion 

of application endpoints or just endpoints which have their own identifiers for message de-

multiplexing purposes. Application endpoints are similar to ports in the TCP/IP stack. A device 

communicates with another device by sending and receiving messages over the ZigBee 

networking layer by specifying the device address and the application endpoint address. Each 

endpoint in turn may implement multiple interfaces which are referred to as clusters according to 

the ZigBee terminology. Clusters have their own identifiers (Cluster IDs) and are collections of 

attributes and commands. In turn attributes are categorized in terms of the access rights: as a) 

―read only‖ if they can only be read (e.g. a measured sensor value) or b) ―read/write‖ if they be 

read or written (e.g. configuration or actuation settings). Attributes are also categorized as: i) 

mandatory if the standard mandates the existence of the attribute on the device that implements a 

specific cluster which includes the attribute in question or b) optional if the standard allows 

devices not to include the specific attribute in their cluster implementation. Clusters have also 

commands which act on the attributes. Commands are described later in the document,  

ZigBee provides several predefined clusters bundled in the generic ZigBee Cluster 

Library (ZCL) specification and as well as individual application profile specifications such as 

the Smart Energy or the Home Automation profile.  The ZCL and the application profile 

specifications include possible device and application configurations apart from the cluster 

specification i.e. specification of attributes and commands for each cluster. An example of such 

configuration is a thermostat device connecting to a device with a temperature sensor in order to 

implement a heating application profile. These possible example configurations will be presented 

later in the document under the sensor and actuation task modeling section.  

ZigBee clusters are collections of attributes and commands regarding sensors and 

actuators. Zigbee uses attribute-value pairs to represent the attributes on each device including 

the sensed values for sensors and the desired outcomes of set points for actuators. Each attribute 

has a specific data type which imposes a specific bit length limit on the stored value of the 

attribute. For example there are 8-bit, 16-bit etc signed integer or character strings with a 
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maximum value of 254 bytes with a run-length encoding (the first byte denotes the length, rest of 

the bytes is the actual string). Attributes cannot have names as arbitrarily long strings because of 

the memory limitation of the sensors/actuator devices. As a result ZigBee employees an 

encoding of each attribute to a 16-bit attribute IDs.  

Apart from the usual attributes (such as the measured light value from a light sensor, 

sensor tolerance, min, max capabilities), sensors and actuators have other more interesting 

attributes such as:  a) event thresholds for generating alarms, b) accumulator/aggregator 

attributes that maintain for example the total operational time of a device or the total energy 

consumption of a sensor or actuator , c) control loop set-points (e.g. target temperature for a 

thermostat-temperature sensor application) or control loop support attributes such as the 

PI(Heating/Cooling)Demand attribute that can be used for a control loop employing a 

Proportional-Integral (PI) controller and d) attributes for setting up control loops e.g. if and how 

a thermostat connects to an occupancy sensor. 

One important note is that the possible values of a sensed/measured quantity may not fit 

to the pre-assigned data type so ZigBee defines its own mapping functions. For example the 

mapping function between the 16-bit representation (MeasuredValue attribute of the Luminance 

Measurement Cluster) of luminance in lx and the actual luminance is MeasuredValue = 10,000 x 

log10 luminance + 1. With this 16-bit representation the possible range of measured luminance is 

1 lx <= Luminance <=3.576 Mlx.  

As a summary of the study performed about the standards to model sensors, we can 

conclude that SensorML provides a good framework to represent not just physical sensors, but 

also virtual, processors, sensor networks, mechanisms to derive high level information from raw 

sensor data, etc. Furthermore, SensorML has plans, in future releases, to work on the mapping 

between IEEE 1541 and ANSI N42.42 standards and on the harmonization of SensorML and 

TransducerML.  

SensorML, as an XML based language, does not provide semantics, but introduces two 

important elements that can be combined with other kind of information: Phenomena and 

Feature of Interest. The Phenomena represents a physical property that can be measured of a 

Feature of Interest; while Feature of interest has the same meaning of the Entity of Interest. The 

definition or representation of the Features of Interest is out of the scope of SensorML, but, using 

some other information sources (like ontologies) semantics about the entities can be expressed. 

It is also important to remark that SensorML is being used by a big number of 

organizations like the NASA or the European Space Agency as the basis for the development 

sensor related applications. 

Apart from the OGC standards the ZibBee sensor and actuator models are useful as 

examples of real-world models. However ZigBee provides fixed and design-time sensor and 

actuator models with implicit semantics. For example a temperature sensor provides a 

temperature measurement with resolution and units that are specified in the ZigBee Cluster 

Library. No ontology is maintained on the sensor nodes for the obvious reasons of memory, 

power and computation limitations. The interfaces to the sensors and actuators are also 
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predetermined by the standard specification and the sensor/actuator task models are design-time 

specified by the applications. Nevertheless ZigBee provides useful notions such as that of Scenes 

which are sets of stored attributes for configuring the application on demand and restoring the 

application when something occurs e.g. a node battery fails. ZigBee provides a framework for 

mainly WS&AN island applications apart from the recently proposed Smart Energy profile. The 

Smart Energy profile defines roles for Automatic Metering applications such as building energy 

measurements. This profile defines the AMI (Advanced Metering Infrastructure) server which is 

positioned outside the WS&AN island and interacts with sensors, actuators, and displays within 

the WS&AN island. The objective of such an AMI application is to provide the user with real-

time measurements about the user’s house and the possibility to control the energy usage.  
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Chapter 3  

Energy Harvesting 
 

Energy harvesting is the process by which energy from the surrounding environment is 

captured and stored. In recent years the term has been applied mainly to sensor networks, where 

small autonomous sensorial nodes employ this process to replenish their energy resources [28]. 

When applied to sensor network architecture, energy harvesting increases the robustness and the 

availability of the system making it energy-independent. 

A WSN node that has energy harvesting capabilities can virtually run for an infinite 

amount of time without the need of periodically replacing its batteries. 

3.1 Mathematical Modeling of Energy Harvesting  
 

Battery-powered systems can employ multiple strategies in order to conserve energy and 

increase operational lifetime. In most cases, systems minimize their energy consumption [29], 

[30] or dynamically scale performance so that all computing goals are achieved within given 

constraints [31], [32], [33], [34]. In order to increase their operational periods, sensor nodes use 

energy harvesting in order to complement their energy budget. Surplus energy is stored in a 

buffer, such as a rechargeable battery or super-capacitor for later use. Further optimization of 

such a system can be done in the direction of minimizing energy consumption to such a degree 

that it becomes smaller than the energy production rate from the harvester. Achieving such a 

condition of energy neutral operation will grant, at least in theory, perpetual operational lifetime 

for a wireless sensor node. Hardware ageing and wear and tear are well documented problems in 

the field of reliability that affect all systems, including sensor nodes. However, a vast majority of 

sensor nodes use components that are very reliable with mean times to failure measured in 

decades, such as microcontrollers or silicon sensors. This, coupled with the use of reliable energy 
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storage devices, such as the super-capacitors described in the previous section could grant the 

node an extended lifetime of neutral energy operation. 

3.1.1 Design Considerations  
 

One of the simplest harvesting systems that can be designed is one where the energy 

which is produced is greater at any given moment than the one which is consumed. However, in 

a real-life scenario this is rarely the case due to the fact that energy production rates are almost 

never constant and can exhibit large variations during a given period of time. For example, the 

energy output of a solar panel can vary widely during the day, due to meteorological conditions 

and will drop to almost zero during the night. The same is the case with other energy harvesting 

systems, such as the ones that employ temperature gradients or vibrations. If energy from such a 

source is fed directly to the system, it will power it only during the periods of high output from 

the harvester. To achieve full energy neutrality it is obvious that an energy buffering and power 

management system is needed in order to store surplus energy and release it when production is 

low or non-existent. 

Energy neutrality is defined as a condition where the energy consumption rate of a 

system is balanced to always fall below the energy production rate. This might seem like a trivial 

matter for a simple sensor node with few integrated components. However, when scaled up to a 

network of hundreds of such nodes, a power manager needs to take into consideration multiple 

other constraints such as quality of service or task scheduling and redistribution in case of node 

failure. This can be achieved by performance balancing algorithms, which use the given energy 

budget for the entire network in order to maintain it operational at the maximum allowed level of 

performance. 
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Figure 9. Energy Harvesting System Diagram 
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A typical energy harvesting system is comprised of three subsystems: 

 Energy Transducer: is responsible for transforming a physical phenomenon such as 

wind, thermal or solar energy into a variable voltage. It usually employs solar panels, 

alternators, or piezoelectric transducers, according to which type of energy is available 

to the system. Usually, the voltage output is not stable and depends on environmental 

conditions which cannot be easily modeled or predicted by the system. In systems such 

as wireless sensor networks, each sensor node can employ the use of such energy 

sources and transducers. 

 Harvesting Circuit: provides impedance matching and supplies an optimal voltage to 

the system load from the variable energy supply of the harvesting source. The 

harvesting system is also in charge for storing excess energy and managing the charge 

and discharge of the energy buffer. Power management algorithms are usually 

implemented at this level. In the case of sensor networks, each node has separate 

harvesting circuitry but the power management algorithm can be distributed, in order to 

ensure a unified power consumption policy.  

 Consumer: also known as the load. It is often variable, according to the activity of the 

system it models. For example, a sensor node consists of many subsystems which can 

serve different purposes and have different functions. These modules can be switched 

on or off, or their consumption adjusted according to the power management policy 

which is implemented in the sensor’s firmware. Most nodes execute a simple while 

loop in which sensor sampling, data processing and radio transmission are executed 

sequentially. This allows a simple power management scheme to be implemented, in 

which hardware modules can be periodically switched in a low power state, according 

to their usage. 

3.1.2 Energy Source Modeling 
 

In this section we describe a model for energy producers and consumers which can be 

applied to any energy harvesting system. This model takes into account the steps needed for a 

system to achieve energy neutrality. As lifetime is influenced by several conditions, but mostly 

by the availability of a steady supply from the energy source, we perceive energy neutrality as a 

different concept, namely the difference between the energy production and consumption rate of 

a given system. Lifetime is hard to define due to the fact that systems that employ harvesting can 

stop functioning for long periods of time when the energy production rate dwindles but resume 

with full functionality when energy goes over a certain threshold. 

Energy harvesting systems might use only one or all of the types of energy sources 

mentioned above. A mathematical model that includes all four types of energy sources was 

derived, starting from a simplified system in which there is no energy buffering. Starting from 

this simple model, we iterated, adding further complexity as we progressed to a model that was 

very close to reality. The first step was to add an ideal energy buffer in order to store surplus 
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energy from the harvesting source. The second iteration added complexity to the buffer, by 

modeling it as a non-ideal storage medium, with energy loss from leakage and during charging.  

The final step was to take into consideration the fact that any storage medium can hold a finite 

amount of charge and that the energy consumption rate from the load can vary.  

We can approximate the sensor network with a closed energy system in which each node 

acts both as a producer and a consumer of energy. We can measure the total energy production 

rate of the node       and the energy consumption rate,       . The excess of harvested energy 

by the node at any moment will be: 

                      
 

 

 (2)  

From this, we can deduce that a node is deemed energy-independent if its excess energy 

satisfies the following formula: 

              (3)  

3.1.3 Energy Harvesting System Categories  
 

As mentioned before, the mathematical model is split into three iterations. The main idea 

behind each case is to establish the relation between the consumed and produced energy rates 

using the laws of energy conservation. When the equation is balanced, energy neutral operation 

is achieved.  

The first iteration covers only the energy storage part, with no concern about the storage 

of the produced energy. In this case, the system gathers energy from the surrounding 

environment and powers the load directly, without any buffering. As an example, imagine a 

system powered by a photovoltaic cell. This system will function only during periods of proper 

illumination, remaining inactive at night. Another example is a piezoelectric device such as the 

one in [35] which has no conventional energy storage and powers its electronics momentarily.    

We define       and       as the energies produced, respectively consumed by the 

harvesting device: 
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(5)  

 For such harvesting systems, the device can operate at all t when  
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               (6)  

Of course, the lack of any energy storage medium will mean that all of the energy 

gathered when             will be wasted, even though the system does not have enough 

energy to function. Also, when            , the surplus energy             will be wasted. 

As previously discussed, the consumption and the energy generation are almost never 

synchronized, with the latter lagging behind in many cases. Also, from the previous example we 

can deduce that there are some cases when gathered energy is greater than the load can absorb, 

so it is simply wasted. A solution for such scenarios is to first devise a way to store incoming 

energy in a buffer and only then supply it to the system. For simplicity, we will first choose an 

ideal energy storage medium. This ideal buffer can store an infinite amount of energy and can 

supply it instantly to the load at any given time, without any losses. In this case, applying the 

rules of energy conservation yields the following equation: 

                           (7)  

                       
 

 

         (8)  

where     is the amount of energy that is stored in the buffer at t=0. 

The last step in the modeling process is to take into consideration the non-ideal nature of 

the energy storage medium. There are two parameters that are relevant to this issue, namely the 

losses that occur during the charging process and the leakage of power from the storage medium 

over long periods of time. These two phenomena affect all energy storage mediums, be it 

batteries or super-capacitors. For this, we introduce two new parameters: the charging efficiency, 

 , which is strictly less than unity and the energy buffer leakage power,            which models 

how much power is being lost by the storage at time t. Another important parameter which needs 

to be taken into account is the fact that any battery or storage medium has a maximum capacity, 

which we define as EB. 

 Applying the same energy conservation laws to the new model, we can establish the 

following relations: 

      
                                 (9)  

      
    

                               
 

 

             (10)  
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The authors of [36] further refine this relation by bounding the produced and consumed 

energy to a specific interval. This is done by finding the (ρ, σ1, σ2) functions associated to the 

energy production and consumption rates. 

A non-negative, continuous and bounded function P(t) is said to be a (ρ, σ1, σ2) function if 

and only if for any value of finite positive real numbers τ and T, the following relation is 

satisfied: 

               
   

 

      (11)  

 The ρ parameter signifies the constant rate at which energy is produced or consumed and  

σ1, σ2 model the burstiness of the energy harvesting source or of the consumer. For their model, 

they presume that PP(t) is a (ρ1, σ1, σ2) and PC(t) is a (ρ2, σ3, σ4) are such functions and that 

leakage is happening at a constant rate Pleak(t) = ρleak. 

By using these assumptions and the relation in (10), they derive the following 

inequalities: 

                 (12)  

                     (13)  

                (14)  

These equations are useful in determining two very important parameters of a harvesting 

system: the maximum size of the energy buffer and the required rate of energy production from 

the harvester circuit. 

In (12) and (13), the maximum energy of the storage element is assessed by taking into 

consideration the burstiness of the harvested source and that of the consumer, and in (14) we can 

compute the rate at which the harvesting circuit needs to supply energy to achieve a sustainable 

rate. 

3.2 Radio Transceiver Consumption Modeling 
 

Research in the area of low-energy radio integrated circuits is ongoing and is motivated 

mainly by the applications in mobile and embedded market. In most countries duty cycling is 

imposed at a certain value for the standard ISM bands [37], [38]. In Europe, for the 434MHz 

band, duty cycling needs to be smaller than 10% and smaller than 1% for the 868MHz band. The 

duty cycle is calculated as the percentage of time the radio is on during a predetermined time 

interval, which, for this standard is an hour. In order to increase the availability of a sensor 
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network, duty cycling is one of the first parameters to be evaluated, as it has a drastic effect on 

the energy efficiency of the network.  

In the following, we present a model for estimating radio energy consumption in a 

wireless sensor network. The main issue is how to estimate the energy needed to send a package 

of n bits of data from the transmitter to the receiver, as in Figure 10. 
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Figure 10. Radio model for the transmission of n bits of information 

In order to transmit a package of n bits at a distance of r, the radio transmitter will spend 

the following amount of energy: 

                           (15)  

where        is the energy that the radio circutry needs to expend in order to process n bits, and 

          is the energy needed by the radio amplifier circuit to send n bits at r meters. 

We can further refine (15) by elaborating of the formula for           : 

 

                             

                   
  (16)  

where         is the energy needed to process a single bit by the radio transmission circuits,      

is the transceiver’s energy dissipation and   represents the path loss exponent. 

Path loss is a major factor in estimating the link budget for a radio transceiver. For the 

present research, we used the standard log-distance path loss model: 

                                  
 

  
    (17)  

where PL is the ideal path loss measured in dB,          is the transmitted power in dBm, 

         is the received power in dBm,     is the path loss at a reference distance    (usually 

1km),   is the path loss exponent, d is the path length and    is the attenuation due to fading. 
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 Path loss exponents are linked to the medium of propagation [39] and usually range from 

2 to 4, where 2 is the path loss of free space propagation and 4 is the path loss exponent for lossy 

environments such as buildings or stadiums. 

An explicit relation for     can be found in [40]: 

 
     

 
  

             
  
 
 
 

              
 (18)  

where 
 

  
 is the signal to noise ratio at the receiver,      is the receiver noise figure,     is the 

thermal noise for a 1Hz bandwidth,    is the channel noise bandwidth,   is the wavelength in 

meters,   is the path loss,      is the antenna gain,      is the transmitter efficiency and      is 

the channel data rate in bits per second. 

Alternatively, we can express in the same way the energy required for the transceiver to 

successfully receive and process n bits of data: 

                        (19)  

 This model assumes that the communication through the radio channel is symmetric and 

that the energy to send a package from node A to B is the same as the one needed to send the 

same package from B to A, for a constant SNR. As can be seen in the above relations, any type 

of communication is not a low cost operation so the protocol stacks that run on the nodes should 

always try to minimize the number of transmit and receive operations in order to keep the energy 

budget of the network under a certain threshold. 

 So far, we have been focusing on modeling the communication between only two nodes, 

but the same model can be scaled up to estimate the energy consumption at network level. For 

this, there are two cases worth taking into consideration: a network in which nodes talk to the 

gateway using a direct communication protocol, and the more general multi-hop network 

scenario, in which messages are passed from neighbor to neighbor until they reach the data sink. 

 Using the direct communication approach, each node has direct access to the gateway. As 

the distance between nodes and the gateway is not constant and can vary within radio 

connectivity range, some remote nodes will need greater amounts of transmit power to 

communicate with the data sink. In this case, r in (16) is large, which leads to more energy spent 

and quicker battery drainage. On the other hand, there is no need for the nodes to receive any 

information from their neighbors, as the communication is done over a star topology network. 

This could prove advantageous or even optimal if nodes are in close proximity to the gateway or 

the cost of reception on the battery-powered nodes is sizeable. 

The second approach is to use a power-aware multi-hop routing protocol, as discussed by 

[41], [42], [43], [44]. In this case, data is disseminated in the network though paths that will 



48 

 

ultimately lead to the sink. These paths are chosen according to the routing algorithm used by the 

protocol stack and can vary, depending on the different metrics involved. 

GatewayGateway

Redundant Path

Linear Path

 
Figure 11. Linear and redundant paths in a sensor network 

 

Consider the example in Figure 12, which represents a typical linear sensor network 

where nodes are spread at equal distances from each other. Based on the equations we described 

earlier, we can estimate the energy cost of communication in such a network. 

First, for the single-hop case, the node is communicating directly to the gateway. For the 

N-th node, this would imply that it needs to increase its transmitter signal strength in order to 

cover the entire distance to the gateway, which would in turn lead to higher energy consumption. 

This can be expressed as: 

 

                     

                         (20)  
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Figure 12. Simple linear sensor network 
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For the multi-hop case, the N-th node needs to send data to his nearest neighbor, which 

would expend energy in receiving the package and retransmitting it to its nearest neighbor, and 

so on until it reaches the data sink. 

The total energy expenditure of the network can be calculated as a sum of N transmits 

and (N-1) receives: 

 

          

                        

                    
                 

                            
           

(21)  

where n is the number of bits in a message. 

 In most cases, however, all nodes in the network need to send packages to the base 

station. For the multi-hop case, we can generalize the relation in (21) to N nodes: 

 

   
                    

 

   

                        

 
       

 
                  

   
       

 
         

 (22)  

 The same generalization can be made with the single-hop case given by (20):  

   
                     

 

   

                     
     

 

   

 (23)  

Using the equations in (22) and (23), we can derive the conditions for which direct 

communication to the gateway has a lower energy cost for the whole network, compared to the 

multi-hop scenario. This is equivalent to the following condition: 

   
             

         (24)  

Certain assumptions must be made in order to simplify the above relation. First, we can 

assume that the energy expended in processing one bit for transmission is roughly equal to the 

energy of processing a received bit, as most radio transceivers use the same electronics for both 

functions: 
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                       (25)  

Secondly, we can assume a constant path loss exponent for the entire network. In most 

cases where it cannot be easily measured, the path loss exponent is estimated to be the standard 

value for free space propagation,    . 

Using these two assumptions, we can write the relation in (24): 
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(29)  

The relation in (29) is applicable for an ideal medium, without any interference. A model 

that is nearer to reality can be obtained if we modify the path loss exponent to a value of 4, 

which is characteristic to a lossy indoor environment. Rewriting (24) for this new parameter 

value yields the following equation: 

 
      
    

 
                 

  
   (30)  

where N is the number of nodes in the linear path and r is the distance between nodes. 

3.3 Energy Harvesting Circuits  
 

A variety of sources for energy harvesting have been researched, such as solar power, 

thermal energy, vibration energy and radio-frequency energy. From the energy standpoint, all of 

the energy sources stated above have small energy density values compared to more classic 

energy sources, such as batteries of fuel cells.  
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The most prevalent energy sources that are used in energy harvesting are specified in 

Table 6. Due to the nature of this study, we focused only on the ones that are most suited for 

powering wireless sensor nodes. 

Energy Source  
Power Density & Performance  Reference 

Vibrations (Piezoelectric)  200 μW/cm3  [45] 

Thermoelectric  60 μW/cm2  [46] 

Ambient Radio Frequency  1 μW/cm2  [47] 

Ambient Light  

100 mW/cm2 (direct sun) 

Commercially 

available 

100 μW/cm2 (illuminated 

office)  

Temperature Variation 10 μW/cm3  [48] 

Vibration 

4 μW/cm3 (human motion—Hz) 

[49] 800 μW/cm3 (machines—kHz)  

Airflow  1 μW/cm2  [50] 

Push buttons  50 μJ/N  [51] 

Shoe Inserts  330 μW/cm2  [52] 

Hand generators  30 W/kg  [53] 

Heel strike  7 W/cm2  [54] 

Acoustic Noise 

0.003 μW/cm3 @ 75Db 

[55] 0.96 μW/cm3 @ 100Db  

Table 6. Energy Harvesting Sources. 

While in the past, the use of radio transceivers often implied large amounts of power 

consumption, recent advances in the design of low-power electronics and energy storage have 

made wireless sensor networks a prime candidate for the successful integration of energy 

harvesting techniques.   

RF

Transceiver

Sensor Interface

Controller
Energy 

Harvesting 

Circuit

S1 S2 S3

Energy 

Source

 

Figure 13. System block diagram of a typical energy harvesting sensor node 

This chapter discusses a few power management techniques that are unique to wireless 

sensor networks. The field of energy harvesting is also covered, with four of the most promising 

technologies being researched: vibration harvesting, thermal conversion, photovoltaic conversion 

and radiofrequency energy harvesting. 
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3.3.1 Energy Profiling for a Sensor Mote 

Energy consumption in a node is directly related to the amount of processing, sensing and 

communication the node has to achieve in a given time interval. These activities can be defined 

as the node’s workload and, it is composed of two distinct phases [56], as shown in Figure 14:  

 low workload – is the state in which the sensor node resides for the most part of its 

activity. The node wakes up periodically, samples data from its sensors and may or may 

not relay data to its peers, depending on its programming. In order to better implement 

this functionality, sensor nodes must provide short wake-up times and a low power 

sleep mode. 

 high workload –the node is executing large amounts of computation and 

communication with other sensor nodes.  

En
er
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 (

J)

Time (s)

sleep

idle

completely on

Low workload High workload Low workload

T
 

Figure 14. Typical Energy Profile of a Sensor Mote 

In reducing node power consumption, the most common approaches [57] are the 

following: 

 duty cycling implies switching on and off a sensor node on a periodical scheme. The 

difference between on and off periods needs to be adjusted according to the designated 

application of the sensor network and can be considerable for slow evolving processes. 

 adaptive-sensing is a strategy that is able to modify the sensor network activity to 

dynamically follow and react to change in the monitored process. 

There are also other parameters that must be taken into consideration when programming 

sensor node applications and duty-cycling. Wake up latency is the time interval from node 

power-up until it generates its first valid results and, as such, adds to the duration of sensor on-

time in one period. If wake-up latency is not taken into account by the application programmer, 

the nodes might broadcast invalid or corrupted data, affecting overall network functionality. 

Another important parameter is the break-even cycle that determines under which conditions it is 



53 

 

efficient to implement power management strategies in a sensor node, as opposed to not 

implementing them at all. Some systems and circuits require considerable amounts of power to 

switch on or off. Implementing duty cycling for a node that uses such circuits may not only drain 

significant amounts of power, but also prove more energy-inefficient than keeping the node on at 

all times [58].  

3.3.2 Vibration Harvesting  
 

Vibration harvesting is based on the piezoelectric effect, namely the capacity of a 

material to generate electricity when subjected to mechanical stress such as stretching or 

compressing. Conversely, a mechanical deformation can be achieved if the crystal is subjected to 

a certain voltage. 

There are several sources that can be used in order to produce an electrical charge by 

employing the piezoelectric effect. Acoustic noise, machine vibration or even human motion are 

some of the sources researched in [59], [60], [61].  

The piezoelectric effect generates an AC current, ranging from microwatts to the order of 

milliwatts of power. While this is an insignificant figure for a large consumer, it can prove 

enough to power a low power mobile or hand-held device. Harvesters can be in the form of shoe 

inserts, to recover energy from walking [62], embedded in walkways in pedestrian areas [63] or 

even as implantable energy sources[64]. 

Most piezoelectric materials are anisotropic, exhibiting different behavior depending on 

the direction of deformation and the orientation of the polarization of the internal crystal lattice. 

These characteristics are defined by a standard set of notations using tensors and matrices [65], 

and the most general notations are shown in Figure 15. Piezoelectric activity is defined by the 

axes of strain application and a series of constants that describe the material. 

3 (Z)

1(X)

2(Y)

5

6

7

Material
Polarisation

 

Figure 15. Axis notation for a piezoelectric crystal 



54 

 

An important parameter in describing a piezoelectric material is the strain constant d. 

This can be defined as the ratio between the developed strain and the applied electric field, in the 

case of applying a voltage excitation to the piezoelectric crystal, or as the ratio between the 

charge density and stress, in the reverse case of applying mechanical force. 

There are two major types of applying a compressive strain to a piezoelectric element: 

perpendicular to the gathering electrodes, to exploit the so called d33 coefficient or transversal in 

order to utilize the d13 coefficient. Increased power outputs can be achieved if multiple 

piezoelectric elements are stacked and connected electrically together. The elements can also be 

arranged in a way that enhances or amplifies the initial excitation, in order to produce higher 

power outputs. 

Another important coefficient in describing a piezoelectric material is the electro-

mechanical coupling coefficient, k. This quantifies the efficiency with which the mechanical 

strain is converted into electrical energy, and can be defined by the following equation: 

    
  

  
 

  
  (31)  

where   
  is the electrical energy stored in the i axis and   

  is the mechanical input energy for 

the j axis. 

The relation between k and d is expressed by the following equation: 

   
   

 
 (32)  

where Y is Young’s modulus. 

Piezoelectric materials have a behavior that combines mechanical stress and electricity. 

The electrical behavior of the material is given by the electrical displacement: 

         (33)  

where D is the electric charge density displacement,   and    are the vacuum and relative 

electrical permittivities and E is the electric field strength. 

On the other hand, mechanical behavior is modeled according to Hooke’s law: 

      (34)  

where S is the normalized measure of deformation or strain, s is the resistance to deformation, or 

compliance and T is the value of the deformation force over a unit of area, also technically 

defined as stress . 
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 A piezoelectric harvester has the electrical equivalent circuit presented in Figure 16. It 

behaves like a high AC voltage source in series with a parasite capacitor and resistor. The series 

resistance can be neglected for most usage scenarios, as it typically has a small value. 

Rpzt

Cpzt

Rload

AC

 

Figure 16 The piezoelectric generator model 

Most of the piezoelectric materials employed in energy harvesting behave as a high 

voltage source with only very little amounts of generated current. A formula for the generated 

voltage of a piezoelectric element subjected to a certain amount of strain is given below.  

        
  

  
  (35)  

where d is the strain constant, t is the thickness of the piezoelectric material, S is the strain, s is 

the compliance, and ε is the electric permittivity of the piezoelectric material. This is, however, 

an AC voltage which needs to be rectified in order to be able to power an electronic device. 

 The short-circuit current of such a piezoelement can be expresses as: 

           (36)  

where f is the frequency of oscillation, S is the strain, A is the element’s surface area, d is the 

piezoelectric strain constant and Y is Young’s modulus.  

 We can assume that on average, a piezoelectric harvester connected to an optimal load 

will generate half the open-circuit voltage and half of the short-circuit current. Using this 

assumption and the equations (32), (35) and (36), we can estimate the average power output of a 

piezoelectric harvester : 

   
 

 
     

 

 
    

 

 
 
  

  
          

   

 
   (37)  

where V = tA and is the total volume of the element. 
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 The piezoelectric harvester design which yields the best results employs a flexible 

cantilever structure which can be attached to the vibration source. The beam is made out of two 

piezoelectric crystals laminated on a sheet of flexible metal, usually steel. A tip mass is added in 

order to provide additional strain and to tune the cantilever’s resonating frequency to that of the 

vibration source. 

The natural frequency of oscillation of the cantilever beam in Figure 17 is [66]: 

     
   

            
 (38)  

where I is the inertia moment, L is the length of the beam, M is the mass of the beam, and M
b 

is 

the bulk end mass and Y is the Young elasticity modulus. 

Mb
E, I, M

L

 

Figure 17. Cantilever beam with added tip mass 

 The concept of vibration harvesting can be successfully applied to a WSN node if it is 

attached to vibration sources such as stairs, microwave oven, door frame, external windows or 

even a person’s shoe. These vibration sources can be harvested by attaching a piezoelectric 

harvester to the source.  

Vibration Source Peak 

Frequency 

(Hz) 

Peak Acceleration 

(m/s
2
) 

Blender Casing 121 6.4 

Clothes Dryer 121 3.5 

Door Frame 125 3 

Microwave Oven 121 2.25 

Ventilator Fan in Office Building 60 0.2-1.5 

People Walking on Wooden Deck 385 1.3 

External Windows (on a busy street) 100 0.7 

Washing Machine 109 0.5 

Refrigerator 240 0.1 

Table 7. Typical vibration energy sources 
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 The challenge for vibration harvesting is that not all vibration sources have the same 

frequency or amplitude, which makes it difficult to have a universal harvester device. Instead, 

most harvesters need to be tuned to a specific frequency, which can prove to be a costly solution. 

According to [67], typical everyday life vibration sources and their physical characteristics are 

given in the table below. 

 The technology has been researched in different universities around the world and 

commercial solutions are already available on the market.  

 One such device is Volture PEH20w Piezoelectric Vibration Energy Harvester which can 

deliver up to 9mW of electrical power when attached on conventional vibration sources.  

 

 

 

a) b) 

Figure 18. Vibration scavenging devices: a) Commercial Volture harvester, b) Vibration harvesting 

circuit employing a DC/DC converter [68] 

3.3.3 Thermoelectric Harvesting  
 

Thermoelectric harvesting relies on the observation that a thermal gradient between two 

conductors made out of different materials will generate a voltage. This phenomenon is known 

as the Seebeck effect and is explained by the fact that heat flow inside the conductor will result 

in a diffusion of charge carriers, which in turn will generate a voltage difference between the hot 

and the cool side of the two conductors. The reverse effect is also possible: running an electrical 

current through the two dissimilar conductors will generate a temperature differential, with the 

device acting as a heat pump. This effect is also known as the Peltier effect. 

The Seebeck effect occurs when a voltage V is induced into an element that is subjected 

to a temperature gradient ΔT. The generated voltage is directly proportional to the temperature 

gradient:  

       (39)  

where α is the Seebeck coefficient.  



58 

 

The above relation is mainly exploited in thermocouples for the exact measurement of 

temperature. However, if many thermocouples are thermally connected in parallel, they can 

generate enough energy to run a low power device, such as a wireless sensor node or charge a 

small battery [69].  

These thermoelectric modules can be designed to generate electricity from a wide array 

of thermal sources, such as the exhaust pipe of an automobile, the nuclear decay of a radioactive 

element in RTGs or even the body heat of a human being. 

The materials out of which thermoelectric generators are currently being built are P and N 

doped semiconductors, especially bismuth-telluride or silicon-germanium, due to its high 

Seebeck coefficient and low thermal conductivity. These semiconductors are set into arrays 

which are connected in series, in order to cumulate the voltage generated by each element. 

Thermally, they are all connected in parallel between two ceramic plates, which ensure good 

electrical insulation and thermal conductivity.  

Compared to vibration harvesters, thermoelectric modules have the advantage of a long 

operational lifetime, because they don’t contain any moving parts. The main disadvantage of 

thermoelectric harvesters is their low efficiency, which rarely exceeds 10% [70]. However, new 

advances in material science and especially in the development of materials that have low heat 

conduction but can conduct electricity will result in improved efficiency in the near future. 

An electrical-equivalent model of a thermoelectric generator (TEG) is given in Figure 19. 

The TEG acts as a DC voltage source with an internal series resistance. Maximum power point 

matching can be achieved for the module if the internal resistance is matched to the load 

resistance. In the case that the TEG is charging a battery or a capacitor, an additional diode must 

be connected in series with the circuit in order to ensure that the stored charge does not flow 

back through the TEG when the thermal gradient is low. 

Rteg

Rload

DC

 

Figure 19. Electrical equivalent of a thermoelectric generator device 

 

The calculated power output P
i 
based on the electrical-equivalent model presented above 

is: 

    
       

     
 (40)  



59 

 

,where α is the Seebeck coefficient, ΔT is the temperature difference across the thermoelements, 

and R
TEG 

is the total series electrical resistance, given by 

          
 

 
  (41)  

,where ρ is the electrical resistivity, n is the number of thermoelement pairs, and L
 
/ A

 
is the ratio 

of the thermoelement length to cross sectional area. 

Figure 20 shows a typical thermocouple module with multiple thermoelement pairs of ―p‖ 

and ―n‖ branches which are linked in series by a metal interconnect, in order to maximize the 

harvested voltage. Thermally, the elements are all in parallel between the two sides of the 

module.  

 

NPNP L∆T

 

Figure 20. Diagram of an ideal Peltier device 

To determine if a TEG can be efficiently used to power a WSN node, a series of 

experiments have been made. The thermoelectric element used was a Peltier cooler rated at 18V, 

2A and capable of a maximum temperature differential of 50 degrees Celsius.  

Each side of the element was fitted with one aluminum radiator and immersed in a bath of 

liquid. A very fine control of the temperature on one of the radiators was achieved by slowly 

heating the liquid into which it was immersed while the other radiator was kept at constant room 

temperature.  

A potentiometer was used to simulate a variable load on the system, which would 

replicate the real life conditions of a wireless node consumer. 

Two types of experiments were conducted. The first one intended to measure the power 

output of the system on a static load while the second experiment measured the power output on 

a variable load. 

For the first experiment, a static load resistance of 1KΩ was chosen. The temperature 

differential on the two plates was varied while measuring the current generated by the element 

and the voltage drop across the load. 
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Figure 21. The experimental setup used to determine the efficiency of current generation in a TEG 

As predicted by the Seebeck effect law, the voltage drop across the load was measured to 

be in direct proportion to the temperature variation. A maximum voltage of 1,065V was achieved 

for a temperature difference of 37.7 degrees Celsius. 

  

Figure 22. Generated output voltage and power as a function of temperature differential between 

the two sites of the Peltier element. 

  The power output of the system, as a function of the temperature differential is plotted in 

Figure 22. The maximum measured power was 1.6mW for a temperature differential of 37.7 

degrees Celsius. 

 The second experiment focused on measuring the output power of the generator for a 

variable load. For this, the temperature difference between the hot and the cold plates of the 

thermoelectric element was kept constant at 35 degrees Celsius. The load resistance was varied 

while measuring the values for current and voltage. 

 Figure 23 shows the variation of the load voltage depending on the current in the circuit. 
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Figure 23. Voltage drop across the variable load resistor as a function of the circuit current 

 

 The purpose of this experiment was to determine the circuit load that yields maximum 

power from the generator. This information is useful in the design of a circuit that uses the 

energy from the TEG to charge a battery or a super-capacitor. Such an optimal charger circuit 

can be made to track this maximum power point (Figure 24) and give the best performance in 

any given situation. 

  
Figure 24. Peak generated power as a function of the load voltage drop. 

 For this experiment, the maximum power achieved at a temperature differential of 35 

degrees Celsius was 39mW (0.78V at 50mA). This power is enough to continuously power a 

Sparrow WSN node (minimum power is 36mW), but environments that have a sustained high 

temperature differential as the one presented are scarce. However, with adequate energy 

buffering it is more than enough to ensure a partially-on power scheme in which the node 
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periodically wakes up from a sleep state, takes measurements and relays that information to the 

sink node, before going back into sleep mode. 

Thermoelectric energy scavenging can be adapted to WSN nodes that lie in an 

environment with moderate temperature variations. In order to produce electricity, a node can be 

placed on a hot surface, such as a room heater or radiator or even on a window to make use of 

the temperature difference between a room and the outside. 

A high efficiency system can be deployed if a node is attached to the exhaust pipe of an 

automobile. The internal combustion engine in automobiles is highly inefficient, and much of the 

energy is transformed into waste heat which dissipates to the environment. According to studies, 

from 100% of energy produced by an internal combustion engine, 40% of the energy generated 

is dissipated through exhaust. If even a small fraction of this energy could be reclaimed, it could 

be used to run electronics and reduce the electrical loading on the engine.  

The sensor node attached to the vehicle can measure reliable information on the state of 

the vehicle and even gas emissions without ever having the need of replacing its batteries. In this 

scenario, the system can log the measured parameters in its internal memory and download them 

to a wireless access point located in the automobile’s garage or even at fixed locations along the 

road. 

3.3.4 Solar Energy Harvesting  
 

One of the most widely-employed energy harvesting techniques uses the photovoltaic 

cells in order to generate electrical power from ambient light. This type of energy harvesting is 

usually employed in places with high availability of light and where mains or battery supply is 

impractical, such as remote outdoor locations. 

The basic unit of a solar converter is the photovoltaic cell. It is semiconductor a device 

with two terminals which behaves like a diode when not illuminated and generates a voltage 

when subjected to luminous flux. The surface of the cell is designed to be light absorbing and is 

strewn with metallic contacts for establishing the required electrical connections. 

A basic cell will typically generate from 0.5V to 1V when subjected to full illumination 

from the sun and a current of around 10 milliamps per each square centimeter of surface. In order 

to generate bigger voltages or currents, the cells are connected in series or parallel arrays of 20 or 

30 identical modules. Standard output voltages for a solar panel constructed in this manner is 

12V or a multiple of this value.  

As almost all solar panels rely on solar illumination for energy production, there will 

always be an interval when generated power will not be sufficient for powering the given load. 

For this reason, most photovoltaic systems also include a power storage subsystem which acts as 

an energy buffer during periods of low energy production. 

A solar cell behaves as a voltage source, with a current that depends on incident 

illumination. A good metric is the photovoltaic current density at short-circuit, or Jsc which has 

the following formula: 
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                     (42)  

where       is the flux density for the incident light and        is the quantum efficiency, or 

the probability that an incident photon will dislocate a corresponding electron from the silicon 

substrate. The quantum efficiency plays a vital role in cell performance under different 

conditions, due to the fact that it gives the efficiency of charge absorbtion by the device and the 

absorbtion coefficient of the photovoltaic material. 

A solar cell also exhibits a dark current, which flows through the device when an external 

voltage is applied and the cell is not subjected to any incident illumination. Under these 

circumstances, solar cells behave like diodes, with higher forward currents than when polarized 

in reverse. We can express the dark current density in a similar fashion to the shortcircuit current 

density: 

              
  
      (43)  

where J0 is constant, k is Boltzmann’s constant and T is the temperature. 

When the solar cell is not connected to any load, the voltage difference at its terminals 

has a maximum value. This is known as the open circuit voltage, or Voc and can be expressed as 

     
  

 
    

   
      (44)  

From the above equation, we can deduce that output voltage will increase logarithmically 

with incident light intensity.  

From an electrical standpoint, the solar cell’s internal circuit is equivalent to an ideal 

current source which is in parallel with a diode. To this ideal model we need to add parasitic 

resistances: a shunt resistor in parallel to the diode and a series resistor. When subjected to 

illumination, the cell produces a current which is proportional to the incident light intensity. The 

diode in the model provides the actual output voltage of the solar cell, due to the fact that a part 

of the photocurrent flows through it and the remaining part through the load. For small loads, this 

current is diverted mainly through the load and, as a result, the output voltage of the panel will 

decrease. The opposite is true for loads that have large values. 
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Figure 25. Equivalent schematic of a photovoltaic cell. 
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By analyzing the equivalent circuit we can express the current produced by the solar cell 

the current produced by the source from which we substract the current which flows through the 

diode and the current which is lost through the shunt resistor: 

 I = IL − ID − ISH (45)  

The current flowing through these elements governed by the voltage across them: 

 Vj = V + IRS (46)  

where V is voltage across the output terminals, I is the output current and RS is the series 

resistance . 

 We can define the power density of the photovoltaic cell as follows: 

       (47)  

When the power density reaches maximum, the maximum power point for the 

photovoltaic cell is achieved. Presuming that this occurs for a certain voltage Vm and current 

density Jm, we can estimate the efficiency of the photovoltaic cell as the ratio between maximum 

power density delivered and the power density of the incident light,   : 

   
  
  

 
    
  

 (48)  
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Figure 26. Power and current density variation to output voltage for a solar cell 
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For the J-V dependency plot in Figure 26, we can define the fill factor as the ratio 

between the power density at the maximum power point and the ideal power density obtained at 

Voc and Jsc: 

    
  
    

 
    
      

 (49)  

The fill factor defines the roundness of the J-V curve and is an important parameter in 

modeling the behavior of a solar cell, along with    ,     and the efficiency,  . We can express all 

parameters and incident luminous flux in a single equation by substituting    in (48) with the 

value from (49): 

   
        

  
 (50)  

We can further elaborate on (57) by expressing the current that flows through the diode 

as: 

        
   
      (51)  

, and the current that is flowing through the parasitic shunt resistance as: 

     
  
   

 
       
   

 (52)  

By replacing these into (57), we get the characteristic equation of a solar cell: 

          
          

      
       
   

 (53)  

 

 

To test the efficiency of solar energy harvesting, the performance of an amorphous silicon 

PV cell has been measured in a series of experiments.  

The experimental testbed is described in the schematic below. The PV cell used was rated 

at 2V and a short-circuit current of 200mA at maximum illumination. A potentiometer was used 

to simulate the variable load of the system while an ammeter and voltmeter were used to measure 

the power output. 
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Figure 27. The experimental setup for PV cell efficiency testing 
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The first experiment involved exposing the cell to different illuminations and measuring 

its voltage-current characteristic. Light intensity was measured by a luxmeter and varied from 

full sunlight (approx. 28000 lux) to the conditions inside a regular office room (2000-5000 lux) 

and a dark room (100 lux). Current and voltage across the variable load resistance were 

measured and the characteristics can be seen plotted in Figure 28. 

 
 

Figure 28. Cell voltage and generated power on a variable load for different illuminations of the 

photovoltaic panel. 

From the above figure we can draw several conclusions. The first one, dictated by the 

model we presented earlier, is that the photovoltaic panel behaves as a current source which is 

limited in voltage. 

The second observation is that by drawing the I-V curve, we can easily observe and 

measure the maximum power point of the cell for different illuminations. At this point, power 

extracted from the cell is at a maximum.  

Another observation is that as the illumination decreases, so does the amount of current 

produced by the cell, which has a direct effect on its maximum power point. From Figure 28 we 

can see that this point is reached at lower currents as the illumination is decreasing. Due to this 

behavior, a solar panel cannot be used to ensure the continuous functioning of a device on its 

own. Most solar harvesters employ a secondary energy buffer which stores and releases power in 

a complementary manner, in order to ensure a steady supply for the system.  

The second experiment intended to measure the total energy that can be harvested with a 

single PV cell over a long period of time. The goal of this experiment was to determine whether 

solar panels are indeed capable of powering a low power embedded device, such as a wireless 

sensor node over indefinite periods of time. In order to achieve this, we measured energy 

production in two locations for a period of ten days and averaged the measurements. The two 

locations were chosen as complete opposites: the first was situated outdoors with an un-obscured 

day-long view of the sun, and the second was indoors, on top of a desk in our laboratory.  
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Figure 29. Photovoltaic cell voltage drop measured in the course of ten days for the outdoor 

location. 

 
Figure 30. Photovoltaic cell voltage drop measured over ten day for the indoor location 
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From the perspective of received incident illumination, the first location was as close to 

ideal as we could get, while the panel situated indoors had only a fraction of the incident light 

received by the former and was thus considered to be the worst case scenario.  

Each solar panel was connected in parallel with a 1KOhm resistor which would simulate 

the load and with a current and voltage measurement system which would log these two 

parameters into its memory every sixty seconds. The graphs for power production in the two 

locations are given in Figure 29 and Figure 30.     

From the graph in Figure 29 we can see that the panel is capable of supplying the load 

with a stable voltage during the day, even though, due to weather conditions, the illumination of 

the panel was not constant. We can also see that there is a sharp increase in power production at 

sunrise followed by a similar sharp decrease at dusk, with close to zero generated power during 

the night. These conditions are very close to an ideal behavior and we can assume that through 

careful installation, they can be achieved by any wireless sensor system that employs solar 

energy harvesting in an open environment, such as a forest or an urban area.  

The graph in Figure 30 shows power production for the indoor location over a series of 

days. Compared to the previous figure, energy production is lower and shows a wider variation 

during daytime. Due to low lighting conditions, the panel was unable to supply a steady amount 

of power to the load. We can see large variations, especially during days eight and nine of the 

experiment, when the weather was mostly overcast. However, we can also observe that there is a 

significant amount of power produced during the night which is mostly due to the photovoltaic 

panel scavenging the room’s interior lighting. 

 
Figure 31. Comparison of indoor and outdoor harvested energy from the solar panels 

Figure 31 shows a comparison of the daily energy harvested by the panel in the two 

locations over the whole duration of the experiment. We can see a clear difference between the 

two, the energy gathered by the outdoors PV cell being on average three to four times larger than 
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the one harvested by the indoor panel. The purpose of this experiment was to determine whether 

photovoltaic harvesting is capable of powering a sensor node indefinitely, even in the worst case 

scenario. We can estimate the total energy consumption of the Sparrow sensor node presented in 

Chapter 4 and compare it to the produced energy. 

The Sparrow Wireless Sensor node has a current consumption of 20mA at a stable supply 

voltage of 1.8V. This yields a power consumption of 36mW. If the node were to function 

uninterrupted during 24 hours at this power level, it would require an energy of 3310.4 Joules, 

which is more than the solar panel can offer. However, as is the case with all wireless sensor 

nodes, the Sparrow node employs duty-cycling in order to reduce its power consumption. During 

its low power sleep state, the node draws roughly 5μA of current from the power supply. Almost 

all the applications in which we used the node had a duty cycle of five minutes, during which the 

node was fully operational only for 2 seconds and the remaining 298 seconds were spent in a 

sleep state. When applying the same calculations on energy spending for the whole day, we came 

op to a daily energy consumption of 21.5 Joules, as shown in Figure 31.  

This proves that, given enough storage capacity and enough incident radiation, solar 

energy harvesting can power a node for an indefinite amount of time. The excess energy 

produced during the day can be stored in a battery or super-capacitor to be consumed during the 

night or on clouded days.  

3.3.5 Radio Frequency Harvesting 
 

A rectifier antenna, or rectenna is a device used to convert radio frequency energy into 

electrical energy through the use of a rectifier circuit attached directly to a regular antenna. For 

most purposes, rectennas are used for microwave energy transmission, due to their high 

efficiency in converting microwaves into electrical energy. In some situations, efficiencies of 

over 85% [71] have been measured. This figure gave us the idea of considering the use of 

rectennas in powering Wireless Sensor Nodes. 

There are many publications that deal with rectifier antennas and their design, such as 

[72], [73], [74]. In the past, research was focused on the efficient transmission and reception of 

high amounts of power, but in recent years the paradigm shifted to the capture of microwave 

radiation of relatively low power densities [75], [76].  

This is the case of wireless sensor nodes, which, due to their specifications, need to 

operate far away from the RF transmission source. We focused on the development of such an 

antenna, which operates at low power densities but has good conversion efficiency because it 

would allow one to power nodes located several feet away from the emission source. 

A simple rectifier antenna consists of a dipole and a diode connected across its elements, 

usually a Schottky diode due to their low forward voltage drop. The alternative current that the 

antenna picks up from the environment is rectified by the diode in order to produce a DC voltage 

output. Of course, multiple rectenna cells can be combined into an array, in order to increase the 

amount of energy gathered from the environment. 
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When employed in Wireless Sensor Networks, rectennas are normally tuned to the ISM 

frequency bands which impose restrictions on the maximum transmission power. Thus, the 

challenge is to formulate a very efficient design within reasonable dimensions. 

 

 

Microwave
Energy

Antenna Impedance 
Matching

Rectifier Load

AC
Voltage

DC
Voltage

 

Figure 32. Typical rectenna circuit 

 

A typical rectenna setup is shown in Figure 32. The microwave energy is converted into 

AC voltage by the antenna and then passed through an impedance matching circuit to the 

rectifier, which, in turn, converts it into DC voltage for the load. The impedance matching circuit 

ensures maximum power transfer by matching the input impedance of the rectifier to that of the 

antenna. In some designs, however, the matching circuit is rendered useless by creating an 

antenna that matches perfectly the rectifier input impedance. 

In our research regarding wireless energy transmission, we studied its applicability on a 

family of antennas called microstrip patch antennas. The reasons for this choice are the small 

dimensions of the antenna and its low manufacturing cost, which would make it an ideal choice 

for wireless sensor networks. 

 The antenna designed in this section is tuned for the 2.4GHz ISM band, as most of the 

WiFi, Bluetooth and Zigbee transceivers that can be found in a typical use-case scenario utilize 

this frequency for communication.  

 

Figure 33. Different types of feeds for rectangular microstrip antennas. From left to right: edge 

feed, inset feed and probe feed. 

 

The simplest model of a patch antenna consists of a conducting top layer, which forms 

the effective surface of the antenna, an insulating dielectric substrate and a bottom conductive 

ground plane. Due to this fact, most patch antennas can be easily fabricated out of a two layer 
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PCB, which significantly decreases their price. Most patch antennas differ in design by the way 

they are fed, as shown in Figure 33. 

For our purposes, we settled on designing a patch antenna that is using edge feed, as an 

inset feed would introduce some parasitic capacitance between the line of the feed and the patch 

itself, which could cause performance degradation.  

x

y

dx

f

l

 

Figure 34. Dimension specifications for an edge feed patch antenna 

Design and simulation of the patch antenna was done with the help of Ansys’ HFSS suite, 

which is a 3D full-wave electromagnetic field simulation tool employed in high-frequency and 

high-speed component design. The antenna was made out of a FR4 double layer PCB with a 

thickness of 1.6mm. Its relative permittivity is         and a loss tangent,         of 0.016. 

The conductivity of the copper layers is                . 

Finding the antenna patch dimensions for the frequency of 2.45GHz was done through 

iterative testing and simulation in the full-wave simulator software, choosing a design that 

yielded the best results. The dimensions we found for the patch antenna in Figure 35 are the 

following: x=27.7, y=30.8, dx=0mm, dy=0.45mm and l=0.4mm. 
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Figure 35. Patch antenna model and simulated 3D radiation pattern 

 

 

 

 

 

 

 

Figure 36. Electric (E) and magnetic (H) field distribution inside the patch antenna 
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Figure 37. Total antenna gain patterns in polar and Cartesian coordinates 

 

 

 

 

Figure 38. Gain and antenna reflection coefficient vs. frequency 

 

Simulation data shows that the antenna resonates at the frequency of 2.45GHz as shown 

in Figure 38 and that it can deliver a gain of around 6dB for that frequency, which is 

encouraging, taking into consideration its dimensions. 

The rectifier antenna system was formed when the antenna was coupled with a diode 

rectifier circuit, as shown in Figure 39. 
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The antenna voltage output is a 2.4GHz sinusoidal AC voltage of varying amplitude, 

depending on the distance from the transmitter and its power. I order to convert it to a DC 

voltage, the rectifier circuit in Figure 39 is employed. However, due to the very low voltages 

induced in the antenna, a very efficient diode rectifier circuit is used which also acts as a voltage 

doubler. The capacitor C1 value was chosen to act as a shortcircuit at 2.4GHz and the two 

Schottky diodes, D1 and D2, are connected in series, virtually doubling the rectified voltage. 

The most important aspect of designing such a circuit is matching its input impedance to 

that of the antenna. The diodes we used for our design were HSMS2852, two zero bias small 

signal diodes in a single package. Their low forward voltage drop and fast switching time proved 

them ideal for our purposes. We calculated their input impedance and halved it, as they can be 

viewed as connected in parallel at microwave frequencies. This gave us the input impedance for 

the rectifier circuit which we used to determine the patch antenna dimensions that would yield 

matching impedance. Results were incorporated in the design of the patch antenna described in 

Figure 35. 

AC C1

D1

RLOADD2

 
Figure 39. Voltage doubler rectifier circuit 

Efficiency of the RF energy harvester circuit presented in Figure 32 can be derived as the 

ratio between the power available at its output and power collected by the antenna from the 

environment. This relation can be expressed as: 

 
  

   
      

 
   

     
        

 (54)  

The Friis equation allows us to compute the received power of an antenna as a function of 

the distance from the transmitter. 

                  
 

   
 
 

 (55)  

, where    is the transmitter power output,     and    are antenna gains,   is the wavelength of 

the microwave radiation and R is the distance between transmitter and receiver. 

 In order to test the effectiveness of powering a device using scavenged microwave 

energy, an experiment has been set up. We needed to test the harvester in a situation close to a 

real life scenario, so we employed a standard 2.4GHz wireless router as an energy source. The 

output of the router was connected to a cylindrical wave guide and the router was set to transmit 

at maximum power, which we measured to be around the regulated limit of -10dBm or 100 W. 
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The harvester was oriented parallel to the wave guide aperture, in order to ensure the highest 

power transfer possible. The harvester was connected in parallel with a 10mF capacitor that was 

intended to simulate an energy storage medium. Several measurements of the capacitor charging 

curve were taken while incrementally increasing the distance from the wave guide from 20 to 60 

centimeters.  

  

Figure 40. Capacitor charge and average received power depending on the distance from the 

microwave emitter 

The capacitor charge curves are plotted in Figure 40 and they clearly show that energy is 

being received by the patch antenna and converted into usable DC voltage. After each charge, 

capacitor voltage reaches a steady value which decreases with distance. This is more clearly 

shown in the second plot from Figure 40 which shows how the average DC power generated at 

the output of the RF harvester varies over distance. Maximum power was achieved at 20cm and 

was 67μW (due to experimental setup constraints, this was the nearest we could reliably measure 

the power transfer), or a 67% efficiency in energy transfer from the transmitter to the harvester. 

However, this figure dropped dramatically when we increased the distance between the two 

entities to around 2μW at 0.5m. This is in accordance with the Friis equation in (55), where is it 

shown that received power varies by the inverse square of the distance from the transmitter. 

 
Figure 41. Rectenna array of six elements employed as a wireless battery. Printed circuit board 

design and actual harvester. 
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In order to overcome the drop in harvested RF energy with distance, a simple solution of 

using multiple rectifier antennas was successfully employed. The antennas were all etched on the 

same PCB in an array and linked together in series to form a wireless battery, as shown in Figure 

41.   
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Chapter 4  

A New Approach In the Design 

of Wireless Sensor Nodes 
 

For the past decades, the speed of processors and memory has increased at an exponential 

rate reaching to orders of magnitude more than even ten years ago. However, during the same 

timeframe, battery energy density has only tripled which denotes an ever increasing gap between 

storage and supply [77]. Energy is a precious resource in WSNs due to the fact that almost all 

nodes run on batteries and their deployment nature and placement does not allow for an easy 

battery change or recharge. In this context, it is necessary to design every component of the 

node, from its hardware to the last level of its software stack, in order to minimize energy 

consumption. Although there has been some significant research in the area of power 

management, the problem of extending a node’s lifetime is still an open research question, 

especially when deploying a sensor network in a real-life environment [78]. 

 As described in Chapter 1, power consumption for most wireless sensor nodes is low 

enough that it enables us to explore the possibility of employing renewable energy sources to 

power nodes in an efficient manner. Such sources have been described in the previous chapter 

and their efficiency at gathering energy from the surrounding environment has been analyzed. 

There is also a large body of articles that cover this topic [79], [80], [81], [82], [83], [84].  

As a conclusion to the experiments made in the previous chapter and of the previously 

mentioned articles, solar energy is the most promising candidate for powering a sensor node in 

an outdoor location. Currently, photovoltaic panels are employed in charging the batteries of 

sensor nodes as well as supplying power to their circuitry [85], [86], [87]. As a defining trait, 

these systems, either have a low efficiency and achieve only small increases in node lifetime, or 

rely on degradeable storage elements, such as NiMH batteries. Using a solar panel to recharge 
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such batteries on a daily cycle puts an extra strain which leads to a significant decrease in their 

lifetime. 

Therefore, the main points a designer should bear in mind when building an inexhaustible 

power supply for a sensor node are not only related to the means of producing energy but also 

taking into consideration its storage. 

 Sparrow [88] is a wireless sensor network architecture that has been built as a research 

platform for the energy harvesting techniques described in the previous chapter. It was also used 

to deploy and test a series of wireless applications including IEEE 802.15.4, 6LoWPAN and 

ZigBee networks. The node architecture is given in the Figure 42. 

Low Power

Microcontroller

(Atmega1281)

802.15.4 Radio 

Transceiver

Power 

Management and 

Energy Harvesting 

Circuitry

Battery or 

Supercapacitor 

Pack

PV or TEG 

Voltage Input

Sensors and 

Programming 

Interface

Sparrow WSN

 

Figure 42. Sparrow mote architecture 

 

In this chapter we present the results of our research in energy storage and delivery 

circuits. These circuits have been designed and incorporated into the Sparrow platform presented 

above. We will first study traditional energy storage systems, such as batteries and compare them 

to a new type of storage devices called super-capacitors. We will assess their efficiency at storing 

and releasing charge when coupled with the harvesting techniques presented in the previous 

chapter and determine whether these circuits are able to produce and store sufficient energy to 

power a sensor node indefinitely. 

4.1 Energy Storage Systems 
 

Sensor motes are designed to function with minute amounts of energy and have a lifetime 

measured in years; therefore, energy storage is a crucial aspect in order to guarantee a good 

WSN design. 

Also of great significance is the power supply design for a wireless sensor node because a 

system that is not properly designed can use too many components, can be too expensive or 

affect node performance by drawing too much energy. 

In concept, energy supply for a sensor node is a simple problem of balancing production 

and consumption. The node must balance its performance, which is directly linked to its power 
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consumption in order to adapt to variations in power supply. In practice, however, power supply 

is complicated by the fact that supplied energy is rarely optimal for the given load and that, due 

to power management states, the load itself varies over time. 

Wireless sensor nodes are systems that exhibit, on average, low power consumption. 

However, there are instances when nodes require large amounts of power such as high 

computational loads or a sudden increase in network traffic. Although these conditions are 

exceptional and occur only in short bursts, the power supply system must be able to cope with 

them and ensure full functionality.  

There are two major approaches to energy management systems. The first one employs 

electrochemical cell (batteries of super-capacitors) and aims to maximize the amount of energy 

drawn from the source in order to extend node life for as long as possible. Another approach is to 

use renewable energy supplies, such as photovoltaic or vibration harvesters in order to power the 

node. Due to low energy demands, sensor nodes are a prime candidate to such an approach. Even 

though the energy harvested from the surrounding environment is not significant in powering a 

modern embedded device like a smartphone, it is more than sufficient to power a sensor mote 

that employs good power management. The problem is still significant for nodes that have long 

periods of high power consumption, or the energy harvester fails to deliver enough energy (i.e. 

nighttime or long periods of cloudy weather for photovoltaics). For such exceptional cases, there 

is still need for an additional energy buffer or some sort of reduction in node activity to adapt to 

these low-energy periods. There is still a problem of the cost such a circuit would add to the 

sensor node. 

4.1.1 Batteries  
 

Due to their placement, most wireless sensor nodes do not have easy access to the mains 

or any other form of stable energy grid. The only suitable option for such a system would be the 

use of an individual energy source, and batteries, due to their low cost and ubiquitous 

availability, have proven a worthy candidate. However, employing batteries in a sensor node 

requires design considerations. 

A battery is an electrochemical cell that has two electrodes separated by an electrolyte. 

They are characterized by parameters such as capacity, charge current, lifetime and charging 

speed. There are also other parameters which pertain to their imperfections, such as leakage or 

self-discharge current, number of charge/discharge cycles and temperature dependence. 

Unfortunately, batteries do not keep up with the growth of computing power which 

characterizes the silicon industry. To paraphrase Moore’s Law, battery capacity for the same 

volume doubles only once every ten years, so there is a growing gap between the fast 

exponential increase in transistors per chip and the energy that can actually be delivered to them 

by modern-day batteries. 

Another parameter which governs batteries is the charging time, which is expressed by 

the amount of time for the battery to reach its nominal discharge current. For example, in an 

ideal case, to charge a 100mAh battery, one would need to connect it to a 100mA power supply 
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for one hour (1C). Charging a battery twice the capacity with the same current supply would 

require two hours (2C), and so on.  

However, due to imperfections, a battery such as the first one above would need more 

than 1C to fully recharge. Charging and recharging efficiency could prove a challenge for a 

system that has indefinite operation as one of their main specifications. Although new 

chemistries such as lithium polymer have delivered higher battery capacities in a small package, 

they usually require very specific charge conditions that can be achieved only by using dedicated 

integrated circuits. These increase the overall node cost and drain additional current only for 

operating. 

Another design point that needs to be addressed is battery lifetime, which normally is 

limited by a certain number of charge-discharge cycles in rechargeable cells. Primary cells, 

which can’t be recharged, have higher energy densities than their rechargeable counterparts for 

the same or lower price. However, in a deployment of a hundred or a thousand-node network, 

primary cells are less favored due to the cost of purchase and of periodically replacing them. 

Rechargeable cells avoid some of the aforementioned problems, but usually have a lower energy 

density, so recharges need to be performed more often than replacement of a primary cell.  

For example, Mica2 is a sensor node uses a 16MHz microcontroller and a CC1000 

900MHz radio transceiver that has a range of ~30m indoors. When at 100% duty cycle and 

powered by two AA batteries, the node can run for less than a day. When lowering the duty cycle 

to less than 1% by employing a power management algorithm, the node can survive for a few 

months. If a photovoltaic panel is added, the batteries can be recharged, which improves 

significantly the node operation time. However, due to a low number of recharge cycles and 

environmental conditions such as day-night temperature variations, the battery will need to be 

replaced after one or two years. Such maintenance costs are recurring and, when scaled to a 

network of a few hundred nodes, become very high if not prohibitive. 
Battery use and recharging is a proven technology and has been used extensively in WSN 

node implementations. Because of this and of the shortcomings that were enumerated in the 

above paragraphs, this study focuses on finding and researching alternate technologies that can 

be used for energy storage at node level. One of the most promising technologies is analyzed in 

the next section. 

4.1.2 Super-capacitors 
 

A capacitor is a circuit element that consists of two metal plates insulated by a dielectric. 

Capacitance is given by the following formula:  

       
 

 
 (56)  
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where ε0
 
is the permittivity of free space, εr is the relative permittivity of the insulating material 

between the electrodes, A is the surface area of each electrode and D is the distance between the 

electrodes. 

Electrolytic capacitors have one of the metal plates replaced by a chemical compound or 

electrolyte and have capacitances ranging from hundreds on nanofarads to thousands of 

microfarads. A special set electrolytic of capacitors are the super-capacitors or ultra-capacitors. 

Due to the discovery of porous substances like aerogel or activated charcoal, an unprecedented 

surface area can be squeezed inside a relatively small volume, thus allowing the creation of 

capacitors with capacitances in the area of tens to hundreds of farads.  

Most super-capacitors store electrostatic charge in the form of ions. They obey the same 

fundamental theory as ordinary capacitors but achieve much higher capacitance due to the large 

surface area of the electrodes or due to thinner dielectrics. Because these devices store charge by 

electrochemistry, they are closer to conventional batteries, with comparable energy densities. 

When modeling a super-capacitor, the equivalent series resistance or ESR must be taken 

into account as it can exert a heavy influence on charging time or voltage leakage over large 

periods of time. Also of importance is the equivalent parallel resistance, which usually has a high 

value and is responsible for the capacitor leakage or self-discharge. Another parasitic component 

of this first order model is the equivalent series inductance L of the capacitors’ voltage terminals. 

RP

C0

RS

L

CV

ABA B

 
Figure 43. Schematic model of a real capacitor 

 

The electrical equivalent model presented in Figure 43 is, however, a simplified first 

order model of a super-capacitor. Due to the porous nature of the electrodes used by electrical 

double-layer capacitors, their behavior resembles more that of long transmission lines. This 

model has been proposed and described in [89], but it does not take into account the variations in 

capacity due to charge voltage or temperature. These are addressed in [90], in which Zubieta et. 

al. propose an additional capacitance that has a linear dependence to the voltage. Also, similar 

models have been described in [91] and [92]. In these, the capacitor is modeled as comprised of 

two parts: a constant capacitance C0 and a variable one, CV which is directly proportional to the 

voltage: CV=KVV, where KV is a constant given by the chemistry of the capacitor. These two 

capacitances are in parallel, so we can compute the total capacitance as being: C = C0 + CV. 

By using this relation, we can determine the variation of the charge current with time 

inside a capacitor: 



82 

 

 

     
  

  
 
     

  
 
         

  

  

          
  

  
 

(57)  

We can also write the energy which a capacitor can store at a given voltage as: 

 
                 

 

 
    

  

 
 (58)  

As a conclusion, the relations above show that both the current and the energy that a 

capacitor can store for a given voltage are larger than the ones given by a standard model, which 

does not take into account the internal particularities of a double-layer capacitor. 

P
max 

, or the maximum power of a capacitor is given by: 

 
     

  

   
 (59)  

where ESR is the equivalent series resistance of the capacitor.  

By having a small ESR, super-capacitors can reach high power densities, although, due to 

material and chemistry limitations, the nominal voltage for such capacitors is low, in the order of 

a few volts. This aspect, and the high manufacturing costs have prevented super-capacitors to 

become a suitable replacement for rechargeable batteries from the mid to high-capacity range.  

However, in the field of wireless sensor networks where node consumption is in the range 

of tens of milliamperes, such large energy densities are not necessary and the advantages of 

using such a capacitor far outweigh the inconveniences. Also, the problem of designing efficient 

charging circuits for batteries (that they themselves need power to operate) is non-existent in the 

case of capacitors. 

In order to determine if super-capacitors are capable of replacing batteries in powering a 

wireless sensor node, a series of experiments were made. In all the experiments we used two 

electrical double layer capacitors: a 1F, 5.5V electrolytic manufactured by Panasonic which has 

an internal resistance of 50Ohm and a 22F, 2.2V Rubycon, with an internal resistance of 

0.1Ohm. Internal resistance is one of the most important parameters that affect the rate of charge 

absorption for a super-capacitor and, as a rule of thumb, decreases as the nominal capacity 

increases. In order to have a reference for our experiments, we also used a regular 10000μF  

electrolytic capacitor and a low capacity NiMH rechargeable battery. 
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Figure 44. Capacitor charge times compared to a 300mAh battery behavior for the same charge 

current 

The first experiment tried to determine how fast a super-capacitor can store a given 

amount of energy compared to a rechargeable battery and a normal electrolytic capacitor. For 

this, we connected each capacitor to a power supply limited in current to 50mA and measured 

their charge time. We applied the same procedure to a 3.2V NiMH rechargeable battery that was 

previously discharged to around 1V. The plot in Figure 44 shows the charge curves of each 

capacitor compared to that of the rechargeable battery.  

By analyzing the graph, it is clear that all capacitors are capable of absorbing charge 

much faster than the rechargeable battery. The differences in charge times between capacitors are 

given mostly by their nominal capacitance. However, these differences are small, as even the 

22F capacitor reaches full charge after only three minutes. This type of behavior is an advantage 

when employing them as an energy buffer in conjunction with energy harvesting. As established 

in the previous chapter, the harvesting module might provide only very short bursts of energy 

into the system, which cannot be efficiently absorbed by a standard battery which relies on 

chemical processes to store charge. Super-capacitors have the ability to store charge quickly and 

efficiently, making them a prime candidate for piezoelectric harvesting, for example. 

The second experiment involved testing discharge of the same capacitors used for the 

first experiment. This was done in order to determine the rate of energy transfer the capacitors 

can achieve compared to that of regular batteries. For this, we connected each of the capacitors to 

a fixed 100Ohm resistive load and measured their discharge time. This was then compared to the 

discharge time of a 21mAh coin cell NiMH battery over the same load. 

The results are plotted in Figure 45: 
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Figure 45. Capacitor and battery discharge curves for a fixed load 

Results of the above plot can be justified by the difference between the energy density of 

capacitors and batteries. Capacitors have a high power density, meaning they can release their 

charge very fast, unlike batteries. Regular capacitors have very low energy density, and due to 

that they cannot store large amounts of charge. This sort of behavior is exhibited in the plot by 

the 10,000μF capacitor, which has a very steep discharge curve. However, modern super-

capacitors also have a sizeable energy density which can be compared to that of batteries. This is 

why the discharge curve of the 1F capacitor is comparable to that of the 21mAh battery and the 

22F capacitor exhibits an even slower discharge, comparable to that of the 300mAh battery. 

In conclusion, super-capacitors are very good at storing and releasing large amounts of 

charge not only over large time intervals, as also rechargeable batteries do, but for very small 

time intervals as well. 

Another positive aspect about the high power density of super-capacitors is their ability 

to release all of their charge, without any residual energy left over. This behavior is not exhibited 

by batteries which cannot release their charge when subjected to a high discharge rate and will 

normally rebound to their previous voltage if the load is disconnected from them. This sort of 

behavior is measured in Figure 46 where a 21mAh battery was discharged over a 100Ohm load. 

After the battery voltage dropped to nearly zero, the load was removed from the circuit and the 

battery regained its previous voltage. The explanation for this rebound is the fact that batteries 

store charge through an electrochemical process which is several orders of magnitude slower 

than the electrostatic process by which charge is stored in a capacitor. 

Charge cycles, which are always a wear and tear issue in rechargeable batteries are 

virtually unlimited in the case of capacitors (millions of cycles as opposed only to thousands for 

batteries). The only age-related degradation they suffer is a decrease in capacity, which can be 

around 20% less after 10 years. Even so, due to their low ESR, they still have 80% of their 

energy available, unlike batteries which have a higher ESR and a steeper decrease in capacity 

with age. Ageing and extending operational lifetime can easily be achieved using capacitors with 

higher values than the ones needed for the node to function. Thus, even in case of diminishing 

capacity, the node still has more than 100% energy storage space over a longer period of time. 
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The same strategy can be applied with batteries only with limited results and little extension of 

lifetime.  

 
Figure 46.Battery behavior after being subjected to a sudden discharge cycle 

Another important point in the case against using batteries is the environmental aspect. 

Most wireless sensor networks are deployed in the wild or in outdoor environments where 

retrieval or servicing is difficult. Batteries wear out in years and their safe disposal poses some 

serious issues, especially when involving a network of hundreds or thousands of nodes. On the 

other hand, capacitors do not employ electrolytes that can leak or that can be as damaging to the 

environment as the ones found in batteries.  

4.2 Charging Circuit Design 

4.2.1 Super-capacitor Charger 
 

The number of cycles a rechargeable battery can endure before significantly diminishing 

its capacity is at most 500 for conventional NiMH. On a daily charge-recharge cycle, such as the 

one batteries in [79] are subjected to, this would translate in changing a node’s batteries once 

every year and a half, or even sooner, if using cheaper alternatives.  

Super-capacitors have higher energy density than batteries [93] and, unlike them, they 

can be subjected to a infinite number of charge-recharge cycles without any degradation 

whatsoever. 

The proposed solution uses aerogel capacitors from Panasonic that have a very low ESR. 

Selecting the correct capacity for a given application is a simple matter of performing a 

calculation of the average current a sensor node will demand. Presuming a 20mA active current 

and a 5μA for a sensor node and a 1% duty cycle, the average current value is 0.01×20 mA + 

0.99×5 μA = 0.205 mA.  
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This current needs to be supplied for the duration the energy harvesting circuit is inactive, 

which, in the case of a photovoltaic panel is during nighttime. Taking a maximum interval of 10 

hours for the duration of the night, and a discharge in supply voltage from 3.6V to a minimum of 

3.3V during this interval, we can calculate the capacity needed for storage is around 25F. 

For convenience, and due to the fact that there was no suitable 25F capacitor on the 

market that would also have an operating voltage higher than 2.3V, we chose two 50F 2.3V 

capacitors that we linked in a series configuration. 

The following simple charge circuit is proposed: 

 

.  

Figure 47 Charging test circuit 

For the first part of the experiments, in order to simulate a sensor node we used a resistor 

that is connected to a FET transistor acting like an on/off switch for the load. Its gate is linked to 

a signal generator that is set to output a square wave of variable duty cycle and period, in order to 

simulate a node’s own duty cycling. 

On the left of the schematic, the solar panel is connected to the capacitors through a 

series of diodes (D2 and D3). These are Schottky diodes that act as a one way valve, directing 

the charge current from the panel to the capacitors and halting it not in reverse. Such a condition 

could happen at night, when the voltage drop on the panel is low and there is the risk of the 

capacitors discharging through it. 

A higher than rated voltage could damage the super-capacitors irreparably, so another 

necessary circuit element is the Zener diode D1. It clamps voltages higher than 3.6V that may 

come from the panel during high light intensity intervals.  

The super-capacitors have 2.2MΩ resistors connected in parallel which form a voltage 

divider. This is necessary in order to reduce the panel voltage to an acceptable level for 

each capacitor. Even though the capacitors have the same value, their rated tolerance is of ± 

20%, which would lead to a charge and voltage drop imbalance. 
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4.2.1.1 Charging Circuit Experiments 

 

In order to test the correct functioning of the solar panel-super-capacitor system, a series 

of experiments were conducted. 

In the first experiment, the load was left unconnected and we tested the behavior of the 

charging circuit under different lighting conditions. For this we used an ordinary 100W lamp and 

different measurements were taken while varying the distance from the solar panel. The light 

source was positioned in order to induce different currents from the photovoltaic panel and 

charge the capacitors at different rates. In this way, we managed to measure the current to 

voltage characteristics in Figure 48. 

 
Figure 48 Panel characteristics for different illuminations 

As can be observed, for each of the supplied currents, the capacitors are being charged 

until they reach a threshold given by the Zener diode (with a tolerance of 20%). All the possible 

configurations have been tested and we can conclude that the voltage on the capacitors will never 

exceed 4V, no matter how strong the illumination conditions the node is exposed to. 

The second experiment’s purpose was to determine whether a steady illumination of the 

panel can provide continuous functioning for the sensor node, while, at the same time, keeping 

the energy storage at a constant level. The light source was placed at a distance where a supply 

current of 30mA was given by the solar panel and the signal generator was set to varying duty 

cycles between 1% and 100%. The total time the load was switched on remained constant at 1 

second. 

Results for each pulse width setting were very similar, so we present only the most 

relevant one, with the node’s duty cycle at 1% in Figure 49. 
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Figure 49. Super-capacitor voltage for a wireless sensor load of varying duty cycles 

Starting this experiment, the load was disconnected and the capacitors left to charge until 

they reached 3.3V. From then on, the load was switched on and the capacitor voltage was 

monitored.  A part of the current from the solar panel was channeled to the load, affecting the 

charge time of the capacitors. However, due to the fact that the load was at 1% duty cycle, this 

had little or no effect on the total charge time. 

 The final experiment was set to demonstrate the ability of the circuit to power the sensor 

node during periods when the illumination is low or non-existent. This would be a definite 

requirement for a real-life deployment of a sensor node, when it is expected for it to survive on 

stored energy for the duration of cloudy days or during nighttime. 

 For this, we designed a real-life experiment where the node would be powered by the 

solar panel at 1% duty cycle as before and set indoors, near our laboratory’s window. We carried 

out the experiment for six days, during which the node had no other means of replenishing its 

energy supplies other than what it harvested though its solar cell.  

 The voltage output from the solar panel was monitored, alongside the voltage levels of 

the capacitors. The following plot in Figure 50 shows the results. 

The plot shows the solar panel is producing energy in cycles, starting in the morning and 

peaking at noon. The capacitor charges following these cycles, reaching a top value of around 

2.8V at maximum illumination and discharging over night. Due to the fact that the node was 

placed indoors, there is also the contribution of room lighting by decreasing the voltage drop 

rate. The plot clearly shows also periods of inactivity from the solar harvester, when incident 

illumination was too low to make any significant contributions.   

As a general observation, the capacitor voltage never drops below the 2V threshold, 

which guarantees that the sensor node was always well inside its normal operating voltage 

domain (3.3V – 1.8V). This, and the fact that after six days of trial the node continued to 
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function, proves that out system can indeed power a sensor node for an unlimited amount of 

time, given certain conditions and that we have accomplished our goal of energy independence. 

 

Figure 50. Solar and capacitor voltages for a energy harvesting sensor node during a period of six 

days 

4.2.2 DC-DC Converters Charger with Power Management 

 The main challenge in the design of the Sparrow nodes was the power management and 

energy harvesting circuit. Its main function is to collect energy from an attached photovoltaic 

cell of thermoelectric generator and continuously charge a super-capacitor. When the charge 

level on the capacitor exceeds a predetermined threshold, the WSN node is powered. 

 

 

 

Figure 51. Schematic of the energy harvesting and power management unit 

The circuit is comprised of two separate sub-systems: the step-up switching regulator and 

the voltage monitoring and control circuit. 
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Energy harvested by the photovoltaic cell or by the TEG can vary and is in direct relation 

to the environment condition. For example, the voltage output of the PV panel can be anything 

between 0V and 2V, depending on the amount of solar radiation the panel receives during a day. 

The same applies to the thermoelectric generator.  

As the WSN node electronics operate at minimum 1.8V, the voltage generated by energy 

harvesting is not high enough. Therefore, a switching converter was used to step-up the gathered 

voltage to a fixed value. This was accomplished using the NCP1402 high-efficiency micropower 

regulator from On Semiconductor. This device is designed to start at a minimum input voltage of 

0.8V and reliably operate down to 0.3V while keeping a fixed output voltage value of 3.3V. 

The output voltage from the switcher is used to slowly charge a 1F double layer super-

capacitor which acts as a power supply for the rest of the node’s electronics. 

The monitoring circuit’s role is to power on and off the WSN node, depending on the 

amount of charge stored in the capacitor. It achieves this function by continuously monitoring 

the capacitor voltage. 

Because of its continuous functioning, the circuit must be very low power and operate 

over a wide supply voltage range. The circuit in Figure 51 uses the MCP6542 comparator, which 

has a typical operating current of 600nA, for the monitor function. The MCP6542 is used with 

the threshold and hysteresis setting resistors R4, R5, and R6, and the LM385 voltage reference to 

control a FET switch, Q1, to turn on power to the MCU circuitry. The FET is on when the 

voltage on C3 is greater than 3V and off when the voltage on C3 is less than 2V. 

Calculating the capacitor size for energy storage requires an estimate of the current flow 

in the circuitry, what is the voltage change on the capacitor and how much time is required 

complete a task. For example, when the node is active, the Sparrow circuitry requires about 

23mA for continuous operation.  

The time the circuitry can operate continuously for a change in C3 capacitor’s voltage 

from 3V to 2V is calculated from: 

   
   

 
 
     

      
            (60)  

This short functioning time can be extended in two ways: by increasing the value of the 

capacitor and by rigorous software power management on the node. 

For example, a 100F super-capacitor can easily power the node in continuous mode for 100 

times the amount of time calculated above, which means that the node can function for about 73 

minutes without any sunlight. 

The second approach is even more effective and relies on the observation that in most 

WSN application scenarios a node does not need to stay on 100% of the time. This behavior is 

called beaconing and implies that the node stays in sleep state for a period of time and wakes up 

on regular intervals to measure sensor data and relay it to the sink node. 

By using this behavior, large amounts of energy that would have otherwise been wasted 

on powering the node, can now be stored for future use in the capacitor, thus increasing the 

system’s lifetime. 
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For example let us presume that a Sparrow node uses a beaconing scheme and wakes up 

every 30 minutes for about 1 second. Taking into consideration that the node has 6uA of current 

consumption in sleep mode and 23mA during wake-up, the total functioning time of the node can 

be increased from 44 seconds to 2.2 hours which is an improvement of almost 200 times. 

By combining the two approaches, of increasing the capacitor size and beaconing, the 

Sparrow node can function for an indefinite amount of time on the energy gathered from its 

surrounding environment. 

 The ZigBit A2 module from Meshnetics was chosen as the main component of the 

design. It is a system on a chip (SoC) that includes an 8-bit low power ATmega1281 

microcontroller, an Atmel AT86RF230 802.15.4 radio transceiver and all the auxiliary drive 

electronics, including a dual radio antenna. 

 

 
 

Figure 52. The Sparrow WSN Node 

4.3 Deployment of Sensor Nodes in a Real-Life Environment 
 

The first large scale deployment application for our wireless sensor nodes was in the 

Frauenkirche [94] in Dresden, Germany. Built in the 18th century, the church was destroyed 

during World War II and remained in ruins for more than fifty years before the city of Dresden 

finalized its reconstruction in 2005. Given its large scale, which sets Frauenkirche as an 

important landmark of Dresden, the church administration wanted to constantly monitor 

environmental conditions throughout the edifice, namely air temperature and humidity. These 

parameters were needed for determining whether the conditions were right for preserving the 

internal stone masonry and murals and serve as an early warning for potentially dangerous 

situations such as water seepage through the new stone walls or interior condensation. 

As one can imagine, installing wired sensors in such a location would have been 

impossible without damaging the existing structure or having a negative impact on the location’s 

aesthetic. Therefore, a wireless sensor network deployment was preferred because it would leave 

a very small footprint on the overall appearance and also have a low installation. The hardware 

requirements for the sensor nodes were given based on a set of constraints: 
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 small form factor: the nodes need to be installed in a historical venue and should not 

interfere with the general aesthetics of the location. 

 ultra-low power consumption: due to their location in hard to reach zones of the edifice, 

operation should last at least one year without the need for servicing or battery 

replacement. 

 sensing capabilities: humidity and temperature must be measured with an accuracy of 

0.1 deg. C. Using low-power digital sensors that are already calibrated is preferable. 

 power metering and management system: the nodes should constantly measure the 

voltage and current drawn from the battery pack and estimate the total energy 

consumption. Nodes should have the capability to turn off some of their subsystems 

(sensing, radio, microcontroller peripherals) and turn them on only when necessary. 

 built-in energy harvesting: nodes should take advantage of the energy available to them 

from the surrounding environment. Usage of miniature photovoltaic panels and/or 

Seebeck effect thermal harvesters can partially or completely satisfy the energy budget 

of a node.  

Requirements were also specified for the software protocols and application the nodes 

needed to run 

 multi-hop network: Nodes should form a multi-hop wireless network that sends 

measured data and receives commands to/from a central sink 

 software energy management: nodes employ a smart energy management algorithm 

that maximizes the sleep times and minimizes power consumption 

 over-the-air reprogramming: the software stack has the capability to reprogram itself 

using the new firmware received from the coordinator 

 location tracking: nodes should be able to run a protocol that enables them to determine 

their relative location to all the other nodes in the network. 

  This task enabled us to test our research platform in a real–life environment for the first 

time. We needed to determine whether the energy harvesting techniques we developed and tested 

in the laboratory would also work in a less than perfect environment that is prone to radio 

interference and imposes heavy availability constraints on the nodes. 

 In the tests we conducted on-site, we determined that radio transmission on the 2.4GHz 

band was less than adequate for the given venue. Due to meter-thick stone walls, interior variable 

geometry and an existing surveillance infrastructure that was broadcasting in the same frequency 

range, the nodes could not associate properly from the given distance.  

Following the poor results we had with the 2.4GHz band, we decided to test whether the 

same problems applied to the 868MHz band. Test results were encouraging, as the frequency 

spectrum was less crowded and the lower frequency guaranteed a better wall penetration.  

The only problem was to modify the Sparrow node to work in the new frequency band. 

This is where the modular aspect of our node came in handy, because we just replaced the 

2.4GHz Zigbit module with an 868MHz one, with no other major modifications to the existing 

circuits. 
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Figure 53.The sensor node developed for the Frauenkirche application 

The second modification we applied to our system was to add low power digital sensors 

for humidity and temperature measurement. We were lucky to find both integrated in the same 

package, the Sensirion SHT21 [95]. Its low profile, low power specifications made it an ideal 

choice for our application needs. 

The monitoring infrastructure was supplied by Zigpos [96], which was this project’s 

industry partner.  

 

 

Figure 54. The monitoring interface showing node placement and measured paramater values 
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Chapter 5  

A Novel Management Protocol 

Suite for WSNs 
 

The Check Management Protocol Suite offers a new approach into monitoring and 

actuation through a framework for heterogeneous WSAN islands. It crosses the borders of 

different organizations and network setups. The monitoring of all the components of 

Environmental Sensor Networks (ESN), Community Sensor Networks (CSN), and Body Sensor 

Networks (BSN), such as load, link quality, processor and radio usage on the nodes, as well as 

enabling actuation in these networks, is not yet fully solved in a fully heterogeneous 

environment. The Check Suite addresses this point by implementing multi-hop task-scheduling 

algorithms, based on multi-hop routing schemes for homogeneous wireless sensor networks.  

In WSANs, packets are typically forwarded in first-come first-served order. However, 

this scheduling does not work well in real-time networks where packets have different end-to-

end deadlines and distance constraints. The multi-hop task-scheduling scheme from the Check 

framework needs topology information from the network, which will be gathered using network 

discovery algorithms.  

Task-scheduling is a fundamental requirement for various subsystems of WSAN islands. 

It can be used, for example, in a smart places scenario where a person is automatically assisted 

by the system to reschedule the appointments at a post office or a shopping mall, or for a worker 

in a plant to enable the parallel execution of tasks and to prevent workers from performing 

conflicting operations. Present research on scheduling is generally focused on hard time 

deadlines. Instead, the Scheduling component of the Check Suite proposes a solution where 

energy consumption, battery awareness, availability and affinity are considered as more 
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important than execution time. The tasks b e i n g  scheduled are the smallest indivisible parts 

of an application. Network Control is provided by the Check scheduling service, which also 

schedules tasks to given nodes. Possible commands sent to sensors are starting a task, ending a 

task, or subscribing to a task’s output. 

Check also offers a centralized monitoring, control and reconfiguration framework, 

which works toward the realization of the scalable internetworking, horizontalization and 

heterogeneity design goals. A big challenge is to enable push and pull algorithms to get 

monitoring data and issue commands to and from the monitoring nodes transparently, efficiently 

and reliably. 

The last component provided by the Check Management Protocol Suite is the availability 

of a high-level, service-oriented self-healing strategy. Here the WSAN is regarded as a service 

provider. Check thus offers a high-level framework for assuring service availability in WSANs. 

Whenever a component of a WSAN island fails, it is of paramount importance that the 

functionality it provides is not lost, to ensure the availability and reliability of the services being 

offered. Check Self-Healing is a component providing the recovery strategies employed when 

these events occur. A service model is used for data input, output and processing in between 

various WSAN nodes. The service model includes data sources and sinks which are connected to 

form a service graph. Services can be allocated to nodes by the Check-Scheduling component of 

the Check Suite. The self-healing component identifies failing or poorly performing services and 

signals and orders the scheduler to reallocate them or reallocates them itself and configures the 

nodes directly. The self-healing algorithms can manage multiple WSAN islands through the 

Check – Monitoring and Reconfiguration management component, and can thus move services 

in heterogeneous WSAN islands if data dependencies allow it. It must also be noted that this 

coupling of the Self-Healing and Monitoring components, by being able to gather information 

from a wide variety of devices, using many operating systems and offering numerous services, 

will provide a hardware- and operating system-independent mechanism for service-level self-

healing in a system. 

Further, we present the features implemented in the Check Management Protocol Suite: 

 Horizontalisation: The monitoring and reprogramming component of the Protocol 

Suite supports horizontalisation by allowing applications to access and modify WSAN 

data and behavior of resources from various islands through get and set interfaces.  

 Manageability: Through the reconfiguration and task-scheduling components, the 

Check Protocol Suite allows the flexible management of WSAN nodes. Through 

reconfiguration, simple commands like start, stop, or restart, are sent to the nodes, 

while task-scheduling permits the optimal distribution of user tasks into the available 

nodes from various WSAN islands. 

 Continuity: The self-healing component of Check insures that services are continually 

available in WSANs that are managed by the Protocol Suite. On node or service failure, 

the self-healing component reallocates the corresponding services to other healthy 

nodes from the same or other WSAN islands. Accordingly, tasks that were scheduled to 
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run on the failed resources are re-scheduled to the new nodes using the task-scheduling 

component of the Check Protocol Suite. 

 Evolvability: Using the reprogramming component of the Check Protocol Suite it is 

possible to change the code that is running on a specific WSAN gateway, or to change 

various network parameters in the controlled islands. 

 Scalability & Locality: The scalability of the monitoring and reconfiguration 

components of Check has been proven with data from numerous WSAN islands across 

Europe which is monitored in real-time in a single online application. Check also 

allows for on-demand reprogramming of gateways or nodes on all WSAN islands.  

 Heterogeneity: The monitoring, reprogramming and self-healing components of the 

Check Protocol Suite are deployed on different WSAN islands and controlling various 

sensor types, more specifically on RZRaven, Sparrow and Sensinode platforms.  

5.1 Framework Overview  
 

As can be observed in Figure 55 the Check Management Protocol Suite consists of the following 

entities:  

 WSAN Island: inside the island sensor nodes organize into a multi-hop wireless 

network with tree topology in which some nodes act as routers for the end node leaves. 

 Edge Router: this is an embedded network coordinator which acts as a sink to the 

sensor node data and routes the island network traffic to IPv6 networks. 

 Gateway: Binary Web Services (BinaryWS) that are running on a machine in the same 

network with the Edge Router. 

 Check Services: the Management Protocol Suite offers Self-healing, Task Scheduling, 

Monitoring and Reprogramming services. Each of these services is operating at various 

levels in the WSAN Islands, Gateway or Edge Router. 

E

R

E

E

R

R

E

E

Edge 
Router

Gateway
SENSEI
System

E

R

End-point Node

Router Node

802.15.4
(RUM)

RAI/RPI data

 

Figure 55. Check Management Protocol Suite components. 

The integration of the Check Management Protocol Suite in the SENSEI [97] system is 

given in Figure 56. The sensor network itself is built around RZRAVEN and Sparrow nodes that 

form a heterogeneous multi-hop network using a modified version of Atmel's RUM protocol 
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over which we ported the Binary Web Services application and our own task scheduling, self-

healing, reprogramming and monitoring applications. The Gateway service acts as a mediator 

between the network and the Check Management Protocol Suite. 

The edge router is an embedded ARM7 board running a modified version of the μTasker 

OS. An IPv6 layer was added over the existing OS to allow the SAM7X platform to act as an 

IPv6 Edge Router in addition to an 802.15.4 PAN Coordinator. The PAN Coordinator performs 

the classical functions defined in section 5.3 of the IEEE 802.15.4-2006 specification. It will start 

and maintain a non-beaconing network. The edge router functionality will route IPv6 network 

traffic to the appropriate end and router nodes based on their specific IPv6 addresses. SAM7X 

provides multiple interfaces for users to interact with the 802.15.4 wireless network. Among 

these are RS232, USB, telnet and simple direct web interface. 

As platforms for the development of the Check Management Protocol Suite [98], we are 

using Raven sensor boards with the Contiki Operating System, IETF 6LowPAN compliant 

Sensinode boards as well as simulated nodes. The graphical user interface of the Management 

Suite depicts the current status of the testbed. The management application is a J2EE (Java 2 

Platform, Enterprise Edition) Java Web App that acts as a client. It can query all services, display 

the status (e.g. test or query attributes) and where possible issue commands to all units developed 

by each SENSEI component, such as restarting or reconfiguration of node services by setting 

node attributes. For example, the monitoring and management component can communicate with 

a Google maps enabled application that shows real-time sensors and sensor data. 
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Figure 56 Integration of the Check Management Protocol Suite into the SENSEI system. 
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5.2 Considerations on Self Healing Networks  
 

Wireless sensor and actuator islands play a major role in future Internet scenarios. In fact, 

they are exploited in a great number of different situations, ranging from the industrial 

application space to military and medical scenarios. 

One of the thesis objectives is to detail how WS&ANs can be integrated into the future 

internet. Since these networks are, generally, optimized for very specific scenarios, they need an 

abstraction framework to enable their functionalities to be exploited in a common system. We 

envision four main areas to be taken into consideration by this framework: 

 Information management: to retrieve both the information collected by the network and 

its own status (configuration parameters, topology, operational state). It has also to be 

possible to issue on demand data gathering procedure. 

 Actuation triggering: the framework has to be able of conveying instructions and to 

issue commands to any node in the network or to any set of nodes. 

 Dynamic configuration: sensible application parameters have to be directly managed 

(i.e., through set, get operations) by the framework. Moreover, it has to be possible to 

reprogram the application running on the nodes in part or in its entirety. 

 Resource management: information about the status of any given node is to be collected 

and stored within the framework, in order to monitor network conditions and to control 

network access for different users. 

An autonomic system is composed of interrelated autonomic elements. Each of these 

elements has managed hardware or software resources that build the IT infrastructure and 

autonomic managers that supervise and control these resources. Self-healing components can 

detect system malfunctions or failures and start corrective actions based on defined policies to 

recover the network or a node. The automatic recovery from damages improves the service 

availability. 

As described in [99], [100], [101], [102] there are different healing strategies based on 

locality awareness of the sensor node and/or energy efficient algorithms. 

 Graph heal: On each deletion, the neighbors of the deleted node in a binary tree are 

reconnected regardless of whether any cycles in the graph formed by the new edges 

introduced for healing. The downside of this algorithm is that the nodes use more edges 

than what is required for maintaining connectivity. 

 Binary tree heal: [103] On each deletion, the neighbors of the deleted node in a binary 

tree being are reconnected careful not to introduce any cycles in the graph formed by 

the new edges introduced for healing. This is done using random IDs which can then be 

used to identify which tree a particular node belongs to. This is an improvement on the 

previous algorithm but still naive since it does not take into consideration the previous 

degree increase suffered by nodes during healing. 

 Automatic Fault Recognition: [104] Rather than having a system response based on 

node deletion events, another self-healing approach is trying to detect fault patterns and 
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have so-called B-scripts react and repair the fault. This strategy defines two new node 

types: lymph and thymus that detect anomalies and malicious behavior and submit 

corrective commands to the system. 

The basic assumption of all current algorithms is that the network is initially a connected 

graph over n nodes. An adversary repeatedly attacks the network. This adversary knows the 

network topology and the algorithms, and it has the ability to delete arbitrary nodes from the 

network. However, we assume the adversary is constrained in that in any time step it can only 

delete a single node from the network. Another assumption is that after the adversary deletes 

some node x from the network, that the neighbors of x become aware of this deletion and that the 

network has a small amount of time to react by adding and deleting some edges. Several 

algorithms implement these strategies, the most efficient being: 

The Forgiving Tree [104] is based on a rooted spanning tree T layout, which without 

loss of generality may as well be the entire network. Each time a non-leaf node v is deleted, it is 

replaced by a balanced binary tree of „virtual nodes‖ with the leaves of the virtual tree taking v's 

place as the parents of v's children. 

When a leaf node is deleted, it is not replaced. However, if the parent of the deleted leaf 

node was a virtual node, its degree has now reduced from 3 to 2, at which point it is considered 

redundant and „short-circuited‖, removing it from the graph, and connecting its surviving child 

directly to its parent. This helps to ensure that, except for heirs, every virtual node is of degree 

exactly 3. The replacement of each deleted node by its virtual tree can be done in O(1) time. The 

total size and number of messages which must be sent is O(1) per deleted vertex. In addition, 

there is a startup cost for communicating the initial ―wills‖; this is O(1) per edge in the original 

network. 

DASH [103] improves on [104] upon several aspects, one of witch being that no node 

ever increases its degree by more than 2 log n, where n is the number of nodes initially in the 

network. DASH adds new edges only among neighbors of deleted nodes; and has average 

latency and bandwidth costs that are at most logarithmic in n. DASH has these properties 

irrespective of the topology of the initial network, and is thus orthogonal and complementary to 

traditional topology-based approaches to defending against attack. 

When a node x is deleted, the neighbors of x react to this deletion by adding some set of 

edges amongst themselves. These edges can only be between nodes which were previously 

neighbors of x. This is to ensure that, as much as possible, edges are added which respect locality 

information in the underlying network. 

DASH is a fully distributed algorithm and it also has several ―flavors‖ like SDASH (Surrogate 

degree based binary tree heal), a heuristic algorithm that tries to keep both node degrees and path 

lengths small.  

SASHA [105] is a self-healing hybrid sensor network architecture that is inspired by and 

co-opts several mechanisms from the acquired Natural Immune System to attain its autonomy, 

and adaptability to unknown faults. SASHA encompasses automatic fault recognition and 

response over a wide range of possible faults and tries to define an adaptive architecture that can 
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learn and evolve its monitoring and inference capabilities over time to deal with unknown faults. 

Two new node types are defined: the lymph, which tries to detect network anomalies, and the 

thymus. In a WSN the survey of a forest can be undertaken by means of mobile scripts running 

on all monitors, called B-script. A script is dynamically generated code and it acts as a filter for 

the behavior and statistical analysis of a forest. The second node type is the thymus that tries to 

store a representation of the current system status known as self and confirm the presence of 

faults. 

This approach is different than the rest of the standard algorithms and more complex. 

SASHA proposes algorithms for automatic fault recognition, adaptive network monitoring and 

coordinated response. Although there is no working implementation of the algorithm, this self-

healing strategy could base itself on other services already described in this document like code 

migration, sensor code update and in-network computation and could also provide better overall 

system response. 

In WSNs the scarcest resource is energy, and one of the most energy-expensive 

operations is data transmission. For this reason, algorithmic research in WSN mostly focuses on 

the study and design of energy aware algorithms for data transmission from the sensor nodes to 

the base stations. Data transmission is usually multi-hop (from node to node, towards the base 

stations), due to the polynomial growth in the energy-cost of radio transmission with respect to 

the transmission distance. 

The algorithmic approach to WSN differentiates itself from the protocol approach by the 

fact that the mathematical models used are more abstract, more general, but sometimes less 

realistic than the models used for protocol design. 

In the Check Service Self-Healing [106] component, the Self-Healing Agent was tested 

on the RZRaven, Sparrow, and Sensinode NanoSensor-based WSAN islands. The Self-Healing 

component was designed to be hardware-agnostic, protocol-independent, and to coexist with 

other management components [107]. Thus, an abstraction mechanism was designed to translate 

WS&AN-specific data into a unified, well-defined format. Similar abstraction layers can be used 

to receive data from other SENSEI components such as the Titan Framework. The Self-Healing 

Agent was designed so that it can be run in multiple instances and can accommodate various 

self-healing strategies based on the service data. An abstraction mechanism was designed to 

translate decisions issued by the Self-Healing Agents into WS&AN-specific commands that have 

the effect of starting, stopping or configuring a service. 

5.3 Scheduling Algorithms for Task-based WS&ANs  

5.3.1 Description  
 

Task-scheduling is a fundamental requirement for the middleware subsystem in 

WS&ANs. It can be used, for example, in the smart places scenario to reschedule the 
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appointments at the post office or the shopping mall, and in the worker in a plant to enable the 

parallel execution of tasks and to prevent workers from performing conflicting operations.   

The Check framework implements a multi-hop task-scheduling algorithm, based on 

multi-hop routing scheme for homogenous wireless sensor networks. The multi-hop scheme 

needs topology information from the network, which is gathered using network discovery 

algorithms that are implemented in the framework, as well as possible solutions from other 

middleware components (e.g. Titan [108]).  

Network control is provided by the Check scheduling service, which schedules tasks to 

given nodes through a dedicated interface. Possible commands sent to sensors are starting a task, 

ending a task, subscribing to a task’s output (which means that the task will send its output to 

multiple data sinks).  

The Check scheduling service also responds to the self-healing service and reallocate 

tasks as needed together with other management components. The service bases its reallocation 

on performance metrics and capability specifications obtained from the network. 

5.3.2 Task Allocation and Management 
 

As a platform for development of the task-scheduling algorithms we used Raven sensor 

boards and the Contiki Operating System [109]. Although the scheduling service is meant to be 

platform independent, the implementation of the middleware system local to a sensor board is 

deeply architecture specific. This means that the protocol can be defined and standardized for 

generic scenarios, while its specific implementation will depend on the hardware platform. The 

Contiki OS uses a cooperative model for processes. Each process that runs on the processor at 

any given time must at some point relinquish its position, or the system would come to a halt. 

Contiki's cooperative process subsystem is based on event queues, where events are associated 

with processes and ―wake‖ them up. In reality, when one process yields it's control of the 

processor, the ―scheduler‖ looks for a new process to run, so an event is taken out of the queue 

and the process associated with it takes hold of the processor. 

There are two possibilities regarding the implementation of generic tasks, one is to have 

them all run under a single process, using timer events with a scheduler similar to real-time 

operating systems. A timer would be set to expire when the first task is due. The downside of this 

method is a difficulty in coming up with a metric for processor use – versus idling. The other 

possibility is to treat a task as a process. The task manager starts and stops tasks, alters settings, 

append subscribers, etc. A performance metric can thus be calculated using this method 

concerning the scheduler. As the system keeps more and more tasks running and using even 

more CPU time, the time slices between schedules will consequently increase. 

Starting the task is similar to starting a process in Contiki, while stopping a task means 

marking it as a ―waiting‖ process, as can be seen in Figure 57. While being marked as ―waiting‖, 

the task is in its (presumed) main infinite loop and it waits until it is taken out of this state by the 

scheduler. 
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Obtaining information from the task can be done in one of two ways, namely: collecting 

data directly, with get/set <parameter>, or using the data sink method, where the entity that 

connects to the sensor can register itself or another entity as a data sink for the output that is 

generated from the task. Parameters can be given, such as the frequency, with which data is 

forwarded to the subscriber. A list of processes can be kept with the linked list API available in 

Contiki OS.  

 

 
Figure 57. Task-scheduling in Contiki OS 

The scheduling service thus has three ways of controlling the running of tasks in the 

WS&AN island: by starting/stopping a task on a sensor; choosing data sinks for output data of a 

task; and by adjusting the frequency with which data is outputted. The scheduler then takes 

decisions taking into account the state of the network, the priority and complexity of the task to 

be executed.  

 

S3

S1 S2

S5

S6

S4

Gateway

S4

S5

S3

S6

S1

S2

Gateway

a) b)

data

commands

a) Task scheduling in a network with star topology.

   b) Task scheduling in mesh networks.  

Figure 58 Task-scheduling in star and mesh networks 
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Task scheduling in a star network topology involves the gateway sending commands 

directly to the sensor nodes, while in mesh networks the current implementation of task-

scheduling uses the gateway to schedule tasks on remote nodes by sending commands via a 

multi-hop routing scheme, as shown in Figure 58. 

The state of the network, other than the topology of the network – which is not discussed 

here, consists of the load on each sensor node. This can be estimated by measuring the time 

between two schedules of a given task, and taking that value, or a weighed sum over a number of 

iterations. This data is obtained by the scheduler either by subscribing to this task or by querying 

it directly from the task server interfaces on each sensor [110]. The energy left in the sensor must 

also be taken into account when scheduling tasks on a node. The energy estimation module 

(energest) provided by the Contiki platform, together with ADC data from the power supply are 

used to determine whether the given node is able to finish the task or not. Since providing 

continuous service for the task is paramount, it must first be determined if the task is not 

repeatable. If this is the case the node with the highest available energy is chosen when 

scheduling the task. 

Currently there are two types of tasks being considered, namely: tasks that only have 

output (e.g. periodic tasks, that just calculate different metrics or send sensor data to data sinks), 

and tasks that process data. The latter can aggregate sensor data from several sensors (they are 

subscribed by the scheduler to the other sensors' data) and, for example, transmit a mean value or 

detect sudden change in the data. The scheduler then picks the nodes or sensors that can handle 

the extra energy loss due to the extra communication required to execute this type of tasks and 

schedules the tasks on these new resources. 

5.3.3 A Novel Task Scheduling Algorithm for WS&AN 
 

The problem we address is an unconventional scheduling algorithm, in the sense that the 

main constraint is not time, but energy [111]. Present research on scheduling is generally focused 

on hard time deadlines. Instead, we propose a solution where time is of least importance, 

preceded by energy consumption, battery awareness, availability and affinity. 

The task that we wish to schedule is the smallest indivisible part of an application. 

Tasks can be classified into sensing tasks, actuating tasks, detection tasks, etc. For example, we 

have a fire detection system implemented with a WSN. We can have smoke sensing tasks on 

nodes that have smoke sensors, an event detection task, which detects in a stream of sensor 

input when smoke levels have risen, and an alarm task, which handles the behavior of the 

network in the case of fire (bell, speaker, opening doors, etc.). 

For the previous scenario, the scheduler needs some basic information for each task: its 

importance, an affinity to a certain type of node (a smoke sensing task can only be assigned to 

wireless nodes that have a  smoke sensor), a frequency  with  which  to  run  (if  the  task  is  

repeatable) and dependencies (both data sinks and data sources). The scheduler will have to 

choose which assignment is best for energy consumption, to put intermediary tasks on sensing 
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nodes or to put them on the alarm nodes. 

In this subsection we will try to formalize the problem defined. First, we will consider 

the total energy remaining in a node    
    being the node. This energy can be deduced 

from the battery voltage and the discharge profile of the type of battery used. We will use this 

energy, together with the estimated consumption per second, to deduce the number of seconds 

that the node can run. The minimum of these times, calculated over each node in the 

network, will be the network lifetime. The purpose of the scheduling algorithm is to maximize 

this value.  

 
 

Figure 59: A Directed Acyclic Graph with edges proportional in weight to transmission energy cost 

Because  the  platforms  that  we  use  never  enter  sleep mode (and their consumption is 

always very low compared to the transmission/reception power consumption), we will consider 

the energy they use incorporated into       which can be specific to each node        
 This value 

represents the energy consumed by the sensor node during idle mode in one second. 

We consider the energy wasted in transmitting/receiving directly proportional to the 

number of bits in the payload. To model the tasks and their dependencies we use a Directed 

Acyclic Graph (DAG), in which edges represent data dependencies, their cost being t he 

maximal number of bits transmitted between the tasks (We consider that a transmission occurs 

after each period). 

 

Let: 

       be the set of tasks allocated to node    

        
 the idle energy consumed by a node     in one second 

              (E the set of edges in the task DAG) is the average number of bits per 

second transmitted by task i to task j 

        
,            

  the energy cost of transmitting/receiving a payload bit on/from 

node    

 M(v) is the node to which the task v was assigned. 
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The power used by a task while receiving data would be: 

                            

          

 (61)  

Aside from the exit point of the application, all tasks will also transmit data: 

                          

          

 
(62)  

Thus the network lifetime is: 

    
      

   

       
                            

 (63)  

Taking into account        
 is almost the same on all nodes, and presuming that we have 

the same amount of energy available from the batteries, the important part remains the energy 

consumed in radio transmission. Thus, to maximize network lifetime, a general goal would be to 

minimize this consumption. We do not consider tasks that need to be run on all capable nodes; 

we will address this as a restriction in the algorithm. 

We have accounted for energy while transmitting and while receiving. Even if they are 

not exactly the same, their sum should be uniform over each bit transmitted, so we can say 

that the power used by the network in radio communication,        is: 

                

               

 (64)  

We have reduced the scheduling problem to a known graph-problem, for which a 

polynomial algorithm has been found in 1988. It is called the min k-cut problem. If we imagine 

in our setup the assignment of tasks to nodes, and ascertain that no task is duplicated among 

nodes (we can enforce that easily by duplicating in advance tasks that have to be run on all 

nodes), then the scheduling is in fact a partition of the node sets              , each resulting 

set containing the tasks that have to run on that node. In graph theory, this is called a k-cut. 

5.3.3.1 Minimal K-Cut  

 

Given a graph G = (V,E) with a weight function w and an integer               the k-cut 

is a partition of V into k disjoint sets                 and its measure is the sum of the weight 

of the edges between the disjoint sets 

            

           

 

     

   

   

 (65)  

We can express the same formula in a simpler manner: 



106 

 

          

                          

 (66)  

The minimal k-cut algorithm is described in the listing below: 

Algorithm 1 Min K-cut algorithm 

function  KCut(V,k) 

if k is even  

then 

k` = k - 2 

else 

k` = k - 1 

end if 

S ←  the set of subsets of k` elements from V 

T ←  the set of subsets of k-1 elements from V  

Find         such that W(cut(s,t)) = min 

/* cut(s,t) splits V into s’ and t’*/ 

/* Find the minimal cut(s,t) with maximal source set */ 

return  s`  
 
KCut(V-s`, k-1) 

 

5.3.3.2 The maximal source minimal s-t cut  

 

The ( s , t )  cut, needed by the min K-Cut  algorithm, is a partitioning of the vertices 

of a flow graph  such that the source is in S and the sink is in T . The min K-Cut algorithm needs 

a version where the source and sink are a set of nodes, not just one. To do this, we can collapse 

the nodes in the sink set into a supernode. Edges on the interior of the supernode do not count 

for the search of the minimal s-t cut, only those on its exterior. We then proceed to solve the 

maximum-flow problem on the graph, interpreting weights as flow capacities. Using the 

residual graph (graph with edges that have weight the capacity-flux passing at one time), we 

can start from the sink and expand until we hit 0 residual capacity edges.  

The nodes found will be the smallest sink set of a minimal s-t cut, the source set being 

the rest of the nodes. 

                      (67)  

Algorithm 2. Maximal source minimal s-t cut 

/* replace sink and source set by supernodes */ 

                 

modify the edges external to supernodes 
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loop 

find path p  from s to t in residual graph 

m ← minimum residual capacity on path p 

for all edges     such that     on path p do 

          

          

end for 

end loop 

A ← set of nodes reachable by BFS from t 

B ← V - A 

 

5.3.3.3 Adaptation of K-Cut  

 

When reducing the scheduling problem to K-Cut, some constraints were ignored that now 

must be satisfied. Since every step of the algorithm is partitioning the node set in half, one 

being final and one remaining to be further partitioned, we can say that each step represents 

scheduling tasks on a single node. Constraints must be inserted in each step, relevant to the node 

whose tasks are being scheduled. In the pseudo code of the algorithm, finding the source set S 

is what must be modified to satisfy constraints. 

We have several constraints that must be added to the algorithm: 

 Some tasks can only run on compatible nodes 

 Some  tasks  have  to  run  on  all  capable  nodes  (e.g. sensing tasks) 

To enforce the first constraint we have to include only compatible tasks (tasks v  such 

that NA(v,m) = 1for the current node m) in the source set, as well as filter the cuts in which the 

first resulting set contains incompatible tasks. For the second constraint, we will include the 

tasks that have to be duplicated in the sink set of the cut (so that they will be available for the 

next step of the algorithm), then in the end we add those tasks to those obtained in the 

minimal (s, t )  cut. 
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Figure 60: A directed graph with a task that has to be duplicated on all capable nodes 

 

Algorithm 3. Adapted min K-Cut 

function                

if k is even  

then 

k` = k - 2 

else 

k` = k - 1 

end if 

MT ← tasks that have multiplicity 

V` ← V - MT 

S ← the set of subsets of k` elements from V` 

T → the set of subsets of k - 1 elements from V`   MT 

Find         such that W(cut(s,t)) = min 

/* cut(s,t) splits V into s` and t` */ 

/* Find the minimal cut(s,t) with maximal source set */ 

                                  

return                             

 

Assigning the tasks for each node at each step gives great versatility in constraints 

management for the algorithm to better model and solve the problem. For instance, battery status 

has no role yet, but it is easy to add: We set a threshold for the battery/tasks ratio, if the current 

node crosses that threshold we will settle on another solution, not necessarily with the same min 

k-cut, but with less strain on the node. 
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5.3.3.4 Algorithm Complexity  

 

The complexity of the min k-cut with the algorithm we described is: 

          
                    (68)  

Where       is the bound for the minimum (s,t)-cut algorithm. 

For k even, we have: 

                                         
 
  (69)  

A more precise formulation is: 

     
  

  
 
           (70)  

     
  

  
 
 
 
         (71)  

The algorithm proposed solves the schedule problem with minimal energy consumption. 

It is designed for heterogeneous networks and it is application-independent. Although it was 

described as for a mesh topology network, the idea can be easily extended by introducing a 

―hop‖ factor in the communication between certain nodes - as dictated by topology. The 

scheduler has however algorithmic complexity, a different solution based on an approximation 

algorithm of the same problem is required for large-scale networks. 

5.3.4 Task-Scheduling Implementation in the Check Framework 
 

The scheduling [112], [113][114] component of Check [115] has three ways of 

controlling the running of tasks in WSAN islands, namely: by starting/stopping a task on a 

sensor; choosing data sinks for output data of a task; or by adjusting the frequency with which 

data is outputted. The scheduler then takes decisions by considering the state of the network, as 

well as the priority and complexity of the task to be executed. Currently there are two types of 

tasks being considered, namely: tasks that only have outputs (e.g. periodic tasks, that just 

calculate different metrics or send sensor data to data sinks), and tasks that process data. The 

latter can aggregate sensor data from several sensors (they are subscribed by the scheduler to the 

other sensors' data) and, for example, transmit a mean value or detect sudden change in the data. 

The scheduler then picks the nodes or sensors that can handle the extra energy loss due to the 

extra communication required to execute this type of tasks and schedules the tasks on these new 

resources. Obtaining information from the task can be done in one of two ways, namely: 

collecting data directly, with get/set operations, or by using the data sink method, where the 

entity that connects to the sensor can register itself or another entity as a data sink for the output 

that is generated from the task. 
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The Scheduling component of the Check Management Protocol Suite is presented as a 

stand-alone application that gathers information (e.g. types and characteristics of the nodes or 

topology) about the network from a Resource Directory. Prior to executing the scheduler, the 

sub-tasks of the application have to be already programmed on the nodes, as stopped tasks. The 

scheduling component itself can be invoked with the following command: 

./check-schedule <RD> <tdag> <tskmap> 

The arguments of the task-scheduling component are the following: 

  RD is the URI of the Resource Directory 

  tdag is a Task Dependency Acyclic Graph. It contains a graph of data dependencies 

between tasks and their associated bandwidth. The format is a text file containing the 

following components: 

 t – the number of tasks. 

 d – the number of dependencies. 

 a – a tuple (x,y,z) for each edge in the dependency graph on one line, with 

x,y being incident tasks and z being the bandwidth. 

  tskmap is a task mapping file, associating each task in the Task Dependency Acyclic 

Graph to the names of the tasks that have to be run on the network. 

 tuples (x,s) are present on every line, x being the task index in the tdag file 

and s being the name of the task associated. Tasks are started based on 

their names. 

An example of a tdag file is given here: 

4 4 

0 1 10 

1 2 1 

0 3 20 

2 3 1 

The application in question has one sensing task (0), two different event detections (tasks 

1 and 3), and a sink task which is notified in the case of an event (task 2). Accordingly, the 

associated tskmap of the tdag file will be: 

0 sense 

1 ed1 

3 ed2 

2 present 

One run of the application is enough to calculate the best scheduling of the application 

over the given network, the application will directly access the nodes and start the required tasks, 

provided the tasks are already present on the sensor nodes. 

An unconventional scheduling algorithm that uses energy as main constraint instead of 

time is currently employed in the Task-Scheduling Component of Check. The scheduler has only 

basic information about the tasks, for example: importance, affinity to a certain node, running 

frequency and dependencies and chooses which assignment is the best for a minimal energy 
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consumption scheme. Energy costs are considered to be proportional to the quantity of data to be 

transmitted. The proposed algorithm solves the scheduling problem so that a minimal energy 

consumption scheme is ensured. This scheme is designed for heterogeneous WSAN islands and 

it is application-independent. Although it was first designed for a mesh topology network, the 

idea can be easily extended by introducing a ―hop‖ factor in the communication between certain 

nodes – as dictated by the network topology.  

The scheduler suffers from a considerable algorithmic complexity; and a different 

solution based on an approximation algorithm for the same problem is required for large-scale 

WSANs. A viable approach would be to use the theorem in [116], which states that the k-cut 

problem can be solved with Gomory-Hu trees within twice of the optimal solution. An 

implementation based on this approximation, is detailed in [117][118], and has proven to be 

within twice of the global optimum.  

 

Figure 61. Runtime comparisons (on a semi-logarithmic scale) of variants of the approximation 

solution, GH is the standard Gomory-Hu algorithm, while AGH is our solution of the scheduling 

problem based on Gomory-Hu. 

The approximation solution to the scheduling problem currently implemented in the 

Check Task-Scheduling Component, as shown in Figure 61, also proves to be a viable alternative 

in terms of complexity. Asymptotically it has the same complexity as the Gomory-Hu algorithm 

on which it is based, although with a higher constant. 
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5.4 Wireless Sensor Network Monitoring for the Check 

Framework 
 

The architecture of the Check Management Protocol Suite is based on MonAlisa 

(MONitoring Agents using a Large Integrated Services Architecture) [119], [120] which is used 

to collect, store and display the data in a scalable manner. There are several components and 

libraries used in this system. The monitoring service is a Java Linux application that collects data 

from a machine and stores it in a local database. The repository is a web application that can 

store and display sensor data. It acts as a client for the monitoring services by registering itself to 

specific data sets and receiving near-real-time updates of the changes.  

5.4.1 The Monitoring Component Implementation  
 

To fully exploit the capabilities of a wireless sensor network, the motes must be 

programmed with efficient code that handles the power management tasks, data acquisition and 

communication between the nodes. The recent trend in WSN software is to run small 

implementations of operating systems on the motes themselves to better manage the multitude of 

tasks that run in parallel. 

Operating Systems for wireless sensor network nodes are typically less complex than 

general-purpose operating systems both because of the special requirements of sensor network 

applications and because of the resource constraints in sensor network hardware platforms. For 

example, sensor network applications are usually not interactive in the same way as applications 

for PCs. Because of this, the operating system does not need to include support for user 

interfaces. Furthermore, the resource constraints in terms of memory and memory mapping 

hardware support make mechanisms such as virtual memory either unnecessary or impossible to 

implement. 

We experimented with different OS images (TinyOS, ArchRock Stack, Meshnetics 

Stack) and we found that the best performances were given by Contiki OS.  

Contiki is a small, open source, highly portable, multitasking computer operating system 

developed for use on a number of memory-constrained networked systems ranging from 8-bit 

computers to embedded systems on microcontrollers, including sensor network motes. The name 

Contiki comes from Thor Heyerdahl's famous Kon-Tiki raft. 

Despite providing multitasking and a built-in TCP/IP stack, Contiki only needs a few 

kilobytes of code and a few hundred bytes of RAM. A full system, complete with a graphical 

user interface, needs about 30 kilobytes of RAM. 

The basic kernel and most of the core functions were developed by Adam Dunkels at the 

Networked Embedded Systems group at the Swedish Institute of Computer Science. 

Contiki is designed for embedded systems with small amounts of memory. A typical 

Contiki configuration is 2 kilobytes of RAM and 40 kilobytes of ROM. Contiki consists of an 

event-driven kernel on top of which application programs are dynamically loaded and unloaded 
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at runtime. Contiki processes use light-weight protothreads that provide a linear, thread-like 

programming style on top of the event-driven kernel. Contiki also supports per-process optional 

preemptive multi-threading, inter-process communication using message passing through events, 

as well as an optional GUI subsystem with either direct graphic support for locally connected 

terminals or networked virtual display with VNC or over Telnet. 

Contiki runs on a variety of platform ranging from embedded microcontrollers such as 

the TI MSP430 and the Atmel AVR to old home computers. Code footprint is on the order of 

kilobytes and memory usage can be configured to be as low as tens of bytes. 

Contiki was successfully ported to the Sparrow motes and has since been used in all the 

experiments concerning the wireless sensor network. 

 We developed a method for monitoring and controlling a heterogeneous WSN remotely 

over the Internet, based on the successful MonALISA framework (Monitoring Agents using a 

Large Integrated Services Architecture). Our method uses an abstraction layer to provide remote 

monitoring and control to essentially any kind of WSN, including the Sparrow motes [121]. 

MonALISA is typically used in monitoring large-scale systems such as computer clusters. 

It can be used to monitor and control any kind of system, including WSNs, as long as the 

appropriate interfacing software is available. 

In short, MonALISA employs repositories to which data can be sent remotely using a 

portable software module named ApMon (Application Monitor) and to which users can connect 

with graphical client programs to view the data remotely. The client software can also access 

control services that run next to the data repositories using a secure, authenticated protocol. The 

connections can be established over the Internet, allowing user access to the WSN from any 

location, or over a local area network. Because multiple ApMon instances can run independently 

from the data repository, a WSN composed of multiple islands, in different locations, can be 

transparently managed as one single entity. 

5.4.1.1 Monitoring System Architecture 

 

WSNs are typically accessed through one or more devices generically called gateways or 

routers. These are typically connected to large computers such as PCs, along with specific 

drivers. Together with the driver, the gateway allows user programs to access the WSN through 

standard Internet protocols such as IPv6, or through special interface programs.  

A monitoring service („monalisa-wsn‖) runs on the computer with the WSN gateway, 

calling WSN-specific programs that report incoming data. These programs call the WSN drivers 

and perform WSN-specific data formatting, while presenting a unified interface to the 

monitoring service, effectively forming an abstraction layer. The monitoring service then uses 

ApMon to upload the data into a MonALISA repository running on the same computer or on a 

remote server. Users can then connect to the repository through a graphical client program and 

retrieve the data and analyze it. Using asymmetric key authentication, the user can connect to a 

MonALISA WSN control module that runs next to the data repository. A control service 

(„monalisa-wsn-ctl‖) runs next to the WSN gateway and connects to the MonALISA control 
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module, enabling the user to send data and commands to the WSN nodes. Figure 62 shows a 

schematic diagram of the WSN monitoring and control system. 

 

Client

PCGatewaySensor Nodes

Internet

Client

MonALISA Server

 

Figure 62. Sparrow WSN architecture 

 

Data in MonALISA is organized as parameter-value pairs pertaining to a „host‖ or 

„node‖. Hosts are grouped into clusters, which are grouped into farms. This stems from its main 

usage as a grid monitoring framework. Farms, clusters, hosts and parameters are identified by 

their name and presented to the user in a hierarchical interface. The application that uploads data 

is free to define any host name, parameter name or parameter value. A convenient way of using 

MonALISA to monitor WSNs is to present a WSN as a host-type entity with a list of parameters. 

The names of the parameters include a part which identifies the WSN node in case of node-

specific parameters. For example, if monitoring temperature sensor readings from a WSN 

containing 4 nodes, the parameters may be named „temperature1‖ to „temperature4‖. The user 

can filter parameters by name in order to concentrate on data of immediate concern. 

The parameters are sampled at defined intervals by the monalisa-wsn program by polling 

the WSN, or they can be reported  by the WSN services automatically. In any case, users can 

view parameter values in near-real-time, as well as their history. Figure 63 shows an example of 

monitoring a sensor network composed of two islands located in two different locations. Each 

island is connected to a PC via a gateway device and each PC is running WSN-specific drivers 

and polling adapters. One island is using Sensinode NanoSensor hardware, which is readily 

capable of measuring temperature and light, and the other is using Atmel Raven hardware which 

only measures temperature readily. Numerous other types of sensors can be added to both 

platforms. 
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Figure 63. Monitoring of different geographically-located WSN islands 

 

Although all WSN nodes can run an infinite variety of custom-designed real-time 

operating systems and embedded applications, a readily-available solution is often preferred. For 

instance, the Sensinode NanoSensors can run the Sensinode NanoStack, which is a 6LoWPAN 

implementation (IPv6 over low-power wireless personal area networks). For debugging purposes 

and simple applications, it can also run a simpler version that uses MAC addressing instead of 

IPv6. The Atmel Raven comes pre-programmed with a ZigBee-based network stack that uses 16-

bit node IDs for addressing. The nodes have to explicitly associate with a coordinator (gateway), 

unlike Sensinode NanoSensors which can be detected by broadcast queries. The Raven can be 

programmed with the Contiki operating system, which implements 6LoWPAN, allowing IP 

addressing. 

Above the network protocol, each case uses a different application protocol for polling 

data from the sensors. NanoSensors use two command-line programs called „nPing‖ and „SSI-

Browser‖ to detect sensor nodes and obtain sensor values respectively. The Raven nodes running 

the default software use a graphical program that connects to a „wireless services‖ back-end. The 

protocols used are known. Contiki uses a web interface accessible directly from a web browser 

over IPv6, but can also be configured to use a protocol with lower overhead. 

Each case needs an adaptation program that is called from the main monitoring service 

and returns parameter-value pairs in a consistent, WSN-independent format. This abstraction 

layer has been implemented and tested for the technologies listed above. A version for the Titan 

framework can be developed, which would allow monitoring performance parameters and 

custom service data. 

The adaptation program can choose to be executed periodically by monalisa-wsn and 

return a data point each time, or to provide data points on the standard output periodically. The 

first option is used when polling the WSN and the second is used when the WSN itself pushes 

the data. When polling the WSN, each node from a list is queried for certain data such as sensor 
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readings, performance metrics or debugging information. The nodes are identified by their 

address, which can have a wide variety of formats, depending on the hardware and software 

used. A technology-specific detection program, „detect‖, is used to build that list, which 

monalisa-wsn then uses transparently. The list can also be built dynamically when nodes 

announce their presence to the gateway, as is the case with the Raven platform. In this case the 

corresponding „detect‖ runs permanently and updates the list when needed. 

Client

Repository

Control 

Module

ApMon

WSN

Gather

WSN

Control

WSN 

Gateway

MonALISA Server PC

Data

Commands

 

Figure 64. Monitoring and control system architecture 

In order to provide increased uptime, a supervisor program can watch that the various 

components of the framework are running correctly. It can for instance restart programs that 

have crashed or locked, such as the WSN driver (Sensinode for example uses a stand-alone 

process as a driver, to which the other programs connect through sockets), the node detection 

program or the main monalisa-wsn program. 

It is important that the WSN monitoring service be able to run on a large variety of 

computer systems. Some WSNs for example are not connected to a PC, but use an embedded 

system such as an ATNGW100 for remote access. ApMon and monalisa-wsn are written in Perl, 

which is a portable scripting language. Perl can run on a large variety of computers, including 

embedded systems. The WSN drivers are usually written in C and can be compiled for mostly 

any system if their source code is available. The abstraction layer is written in Perl, Python and 

Unix shell, making it also highly portable. 

The MonALISA graphical client (Figure 65) is written in Java, therefore it is capable of 

running on any modern PC operating system. 

The monitoring component of the Check Management Protocol Suite is plugin-able. 

Check does not internally store monitoring information, but uses other monitoring suites to 

provide these services. In this case, we use a MonAlisa service. This service is used to store and 

graph data for long periods of time. Check plugs itself as a resource into the Resource Directory 

and can thus be used by any service just by using a REST interface to register new nodes and 

parameters to monitor. 
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Figure 65. MonALISA graphical client user interface showing the UPB WSN cluster data 

 

 

Figure 66. Data aggregation example from geographically distinct areas monitored by two WSN 

islands. 

The installation of this component requires the availability of a Java 6 instance, a 

MonAlisa Service which is used to monitor sensor data, as well as a MonAlisa Repository that is 

employed to store the data for long periods of time and register new nodes that should be 

monitored by the Check Protocol Suite. This Check component belongs to the management 

directory of the SENSEI Source Code Repository, as follows: 

  /SenseiRepos – the MonAlisa Repository where files and configuration are saved. 

  /SenseiService – where the Monitoring Plugins are stored. 
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  /SenseiHibernate – contains the Rest Monitoring Interface for Check. 

To enable the monitoring plugins one must configure the service as follows: 

# Properties to add 

lia.Monitor.CLASSURLs=file:${MonaLisa_HOME}/Service/usr_code/SenseiService/build/ 

The plugins that are available on the monitoring Check component are: 

  monSensei – monitors resources using REST. The resources to monitor are then given 

by the REST interface of the Check Protocol Suite. 

  monPing6 – monitors the status of a node by pinging it through IPv6 ping. 

  monService – checks the availability of a service. 

In order to be able to use these plugins, one must enable them as follows: 

# To add in myFarm.conf 

*Topology 

>gw.ncit.pub.ro 

monPing%60 

 

Figure 67. Graphical User Interface of the Check Monitoring Component. 

 

As was mentioned before, the data extracted from all WSANs sensor nodes is stored in a 

local database for three hours. For long term storage however, a dedicated database is employed. 

Examples of monitored data stored in these databases are given in Figure 67 and Figure 68. 
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Figure 68: Data gathered and presented using the Check Monitoring Component. 
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Chapter 6  

Wireless Sensor Networks 

Applications 
 

In order to validate the theoretical and experimental research done in the previous 

chapters, we needed to evaluate our system’s behavior and assess its efficiency when deployed in 

a real-life environment. For this we chose two separate types of application scenarios, each with 

its own distinct set of constraints and requirements. They are presented in the following sections. 

All applications use the Sparrow sensor nodes presented in Chapter 4, to which additional 

circuits and extension boards have been added to enhance their functionality. New platforms 

have also been developed and built, such as an embedded Linux gateway for the home 

automation application and a mobile measurement unit for the air pollution monitoring 

application. 

6.1 Home Automation 
 

We propose a new wireless sensor network architecture that is especially designed for 

the task of home automation [122]. Our system relies on a low power WS&AN that employs 

energy  harvesting techniques to maximize node lifetime and an embedded residential 

gateway that offers user interaction and secure connectivity to the outside world. The 

advantages of our system are its scalability, low power, self sufficiency and versatility. 

Home automation is the process in which the household environment is given 

additional functionalities through the integration of sensors and actuators into otherwise non-

automated systems like lighting, heating, air conditioning and even regular appliances with 

the purpose of providing improved convenience, security and energy efficiency. Almost all of 
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the home automation systems that are currently available on the market employ wired 

networks and a multitude of communication protocols like X-10, Universal Powerline Bus 

(UPB), MODBUS, or even via a standard Ethernet connection. They all have been available for 

at least a couple of decades and, while technologically and functionally proven, they offer some 

disadvantages that hindered their widespread adoption. For example, MODBUS and Ethernet 

require cabling for both power and data lines that can be expensive and aesthetically 

displeasing. X-10 and UPB have the major advantage of utilizing the already existing power line 

and outlet infrastructure but suffer from low bandwidth and are susceptible to high error rates on 

low quality or noisy power lines. 

Wireless sensor networks seemed the logical step to address the issue, because of their 

ability to function using relatively small, inexpensive, low-power nodes that can form short range 

networks using protocols like Bluetooth [123], Zigbee [16], WirelessHART [124], or 6LoWPAN 

[125]. 

However, not all of the above standards are equally well suited to a home automation 

scenario. For example, Bluetooth networks are usually limited to a small number of nodes and 

have higher energy consumption than its Zigbee counterparts. WirelessHART, although reliable 

and highly flexible, is more suited to Process field device networks that are used in industrial 

environments. 

Prior work exists in the field of Web-enabled Home Automation systems presenting both 

IP networks and WSNs[126]. The authors in [ 1 2 7 ]  argue that Home Automation systems 

have a lot to benefit from using IP technology and integrating with the Web. As the sensor 

networks become part of the ‖Web of Things‖, they become much easier to use in other 

applications due to their Internet connectivity and standard interfaces. They present two project 

to argue this case, the first being an island of sensor nodes with RESTful interfaces, together with 

a mash-up editor in which a user can use their sensed data and actuator interfaces to create 

their own application. The second project involves obtaining real-time consumption data from 

an electricity outlet and displaying it on an iPhone. 

While our system has characteristics that encompasses both of these projects, there are 

some key divergences: The authors interface the sensor nodes directly with RESTful interfaces, 

which we see as energy inefficient. 

Another project [126] also uses IPv6 on sensor motes, but communication is mediated 

by a proxy server, which is more akin to our solution. This brings the advantages of connecting a 

WSN to the Internet without the drawback of increased traffic in the WSN by having the 

enhanced base station/proxy server mediate all the traffic. 

The 6LoWPAN standard promises the fulfillment of the emerging trend of embedding 

Internet technology into all aspects of everyday life [127], mainly because of its low costs, low 

power, scalability, possibility to easily adapt existing technologies. 

In this paper we present a home automation infrastructure that is built around a 

6LoWPAN wireless sensor network, an embedded gateway and an application suite for 

deploying, monitoring and controlling the system. 
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6.1.1 System Requirements 
 

Home automation systems consist of interlinked components that are in effect a type of 

centralized distributed system that has a set of characteristic properties and attributes. According 

to [127], these are the following: 

 Future-proof. A HA system cannot be easily upgraded or uninstalled during the 

lifetime of a building, so it needs to use a stable, proven and future-proof technology. 

 Moderate cost. A HA system usually consists of a large quantity of sensing and 

actuating entities that need to be in constant communication both with each other and 

with the central entity. Because of these specifications, most of the solutions for 

home automation tend to be either too costly, either inefficient. For the system to be 

effective, a compromise between cost and functionality must be achieved, while at the 

same time maximizing the benefits. 

 Low installation overhead. Because current HA solutions rely entirely on wired 

communication, the installation of such a system proves complex and often needs 

modifications in the building itself. Any modern HA system has to have a low 

installation overhead, requiring little or no modification to the existing home 

environment. 

 Configuration effort. System configuration should be easy and time-efficient. 

Adding new functions or modules to the system should be facilitated by a paradigm 

that is similar to plug-and-play. 

 Connectivity.  All entities of the system need to be connected, either through a 

unified interface or through a specialized one that allows bridging different 

technologies and hardware. Connectivity with the outside world is also a desired 

functionality. 

 User interaction. Special care must be taken with interface ergonomics. The user 

should not be asked for ambiguous or repetitive commands and the interface must have 

familiar controls that need little or no training even for an inexperienced user. 

 Security.  The system must be aware and protect its users from threats like 

unauthorized access, privacy invasion or destruction. 

 

Most of today’s residences and apartments already have Internet connectivity, so, 

utilizing the existing Ethernet infrastructure as a backbone for our application is not only logical, 

but also satisfies all of the above requirements. 

6.1.2 Overview of System Architecture 
 

Our goal is to develop a house monitoring system that is robust, flexible, u s e r -

f r i e n d l y  and has a wide range of capabilities. The main components of the monitoring 

system are a gateway and a network of low power sensor and actuator nodes. 



123 

 

Our Wireless Sensor Network (WSN) architecture has three main hardware 

components: 

 Wireless Sensor Motes 

 Network Gateway 

 Android-enabled Smartphone 

The way these components are interlinked to create a reliable WSN system is shown in the 

diagram below: 

 

 

Figure 69 System Architecture 

 

The embedded gateway is the core of the system. It pro- vides the user with a touch 

screen interface for configuring and monitoring the sensor network and the gathered data. As 

an enhancement to data monitoring, the user has the possibility of  setting  up  alarms  (e.g.  the  

gateway  sends  a  text  message  to  the  user  if  the  temperature crosses  a threshold). The 

nodes may be equipped with various sensors. Collected data is then wirelessly sent to the 

gateway, where it is stored and eventually displayed. The system also provides means to monitor 

data remotely. The user can connect to the gateway via the Internet and view real-time graphs 

and statistics of the network data using an Android smartphone. 

6.1.3 Sensor hardware 
 

For this project we used the Sparrow v2 node [88], presented in Chapter 4 which we 

extended for use is built around the Zigbit A2 module from Atmel. It has a low- power 8-bit 

RISC microcontroller connected to a 2.4GHz 802.15.4 radio transceiver. In order to increase 

versatility, the microcontroller is linked to an extended sensor bus that can accommodate up to 

three different types of analog and digital sensors. Although the mote has very low power 

consumption and can function for long periods of time on a single battery charge, we designed 

the node for total energy-independence by attaching an energy harvesting module.  
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The voltage from the energy harvester is used to charge the battery pack by the first 

stage DC-DC converter. Then, battery voltage is supplied at a stable level to the node’s 

main circuitry. For power management purposes, the node also needs to continuously  monitor  

the  voltage  and  the  current  drawn from  the  battery pack,  which  is  achieved by  the  

energy measurement module. 

6.1.4 Sensor firmware 
 

The nodes in our testbed run a light-weight operating system designed specifically for 

use in WSNs, named Contiki [15]. It offers a cooperative protothread model and an RFC-

compliant wireless IPv6 stack, built on top of IEEE802.15.4. Our system features two firmware 

versions of Contiki, one that runs on the regular sensor nodes and is suited for data gathering, 

and another version for a coordinator node. The coordinator has the added burden of a serial 

link to the embedded gateway, fulfilling the role of sensor data sink. 

Sonda is the client firmware that runs on the sensor motes. It enables a node to 

wirelessly transmit data from its sensors to the gateway. Each sensor node can interface with a 

wide range of sensors: temperature, pressure, humidity, light intensity, proximity detection, air 

quality, etc. 

Transmission of the sensor values is done periodically over a UDP/IPv6 connection to 

the gateway. IPv6 addresses are fixed in EEPROM memory, as dynamic addresses are not 

implemented in the operating system. This makes the addresses easy to reconfigure, as 

opposed to rewriting the firmware on each node. The dissemination of data using UDP over 

uIPv6 allows a certain flexibility of the system since the coordinator does not have to know 

about what nodes are available, because it maintains the list of all the nodes that are 

contributing with sensor data. Data is sent over the network in a simple text format, therefore, 

is self- describing. Neither the coordinator nor the gateway has to know which are the 

capabilities of each individual nodes since they can be discerned easily from the data it is 

sending. Sonda Gateway runs on the coordinator mote. It accepts wireless UDP connections 

that carry sensor data. Each mote sends datagrams containing pairs of values denoting the 

sensor type and measured data. The role of the coordinator mote is to forward the received 

pairs via UDP/IPv6 to the embedded gateway on a serial connection. 

Sonda Power runs on a custom-built mote that measures power consumption at a mains 

outlet. The mote itself is a board based on the Sparrow module but features additional circuitry 

for AC voltage and current measurement. 

6.1.5 Embedded Gateway 
 

1) Platform setup:  When designing the gateway, we had to respect some specific 

constraints. The gateway must be a dedicated hardware device, low-cost and power efficient, 

easy to use by the end-user, reliable and secure. It has to provide the following functions: 
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 Collect data from wireless nodes (act like a gateway for the WSN) . 

 Provide a direct interface for basic user settings and control via a touch screen. 

 Provide a web interface for extended settings, visualization and control of the WSN. 

 Process data and send it to MonALISA, a grid-based large-scale monitoring platform 

discussed by [128]. 

 

Figure 70 Screenshot of the embedded gateway system 

 

We needed a powerful yet low-cost platform that can interface a wide range of 

peripherals. For the prototype, we chose the Atmel’s ATNGW100 board that has all the features 

above and can run a Linux operating system. The board is equipped with an AP7000 (Atmel’s 

proprietary AVR32 32 bit RISC architecture) processor that can run at 140MHz, which gives it 

enough computing power to run Linux, a small HTTP server with server-side scripting and a 

GUI application. 

We interfaced to this board a 320x240 pixel color TFT display with touch screen, to 

provide a basic user interface. In order to give the gateway access to the wireless network, we 

also added a Sparrow node. 

For this system we used an up-to-date kernel version, 2.6.30.6, with several additional 

drivers enabled, mainly framebuffer support for the LCD display. The systems was built with 

buildroot, which is a set of makefiles for both kernel and userspace libraries. It includes all 

necessary support for a web server and a menu interface that uses Qtopia for the LCD. 

The gateway receives and stores sensor data from the motes. This can be then viewed 

in a graphical form from the menus on the LCD screen and, at the same time, it is made available 

on the Ethernet connection by a HTTP server via REST-like queries. This enables a variety of 

possible Web applications to integrate sensor data, such as the Android platform we developed. 

2) Application Design:  The application running on the gateway is meant to be a 

terminal for the entire home automation system, providing both configuration screens and up-to-

date information on the system. It has several graph screens to plot the reported sensor data 

and configuration panels to setup gateway network parameters and to add alarms for certain 

sensor data. 
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As Figure 70 shows, the main screen has a representative map of the residence (designed 

by the user) along with the sensors mapped to each room. Users can also quickly view node 

availability and logged events in the system. 

3) Gateway Interface:   The system is designed to be easily customized after being 

deployed in the user’s home. The graphical interface of the gateway can be configured to 

resemble the actual design of the house, providing the user with a simple, intuitive tool for 

interacting with the monitoring system.  This facility is implemented through a web interface 

hosted on the gateway. We used Scalable Vector Graphics and Javascript in creating this 

interface, therefore it must be accessed form a browser that can interpret SVG files. 

The purpose of the interface is to generate a PNG image that mimics the design of the 

home, along with some other information about each room: a room name and a list of sensors 

that are active in that room. The user inputs first a layout of the rooms in the house and then 

enters data regarding active sensors in each room. This is all that is required in order to 

generate a fully customized interface for the gateway. 

 

Figure 71. Customize interface screen 

 

Generating the final image to be displayed on the gateway occurs as follows: first, the 

user input is used to generate a SVG image. Next, this image is scaled to the exact dimensions 

of the gateway’s screen. This way we can obtain a clear image and use the screen’s limited 

resolution as much as possible. Finally, the SVG image is converted to PNG format. The list of 

sensors for each room is stored into a configuration file. The interface configuration is 

completed after the PNG image and configuration file are uploaded to the gateway. 
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6.1.6 Application Monitoring  

6.1.6.1 Embedded Monitoring Application for the Android Platform 

 

The Android application is meant to give additional ways of presenting and manipulating 

data obtained from the gate- way. The gateway hosts an Apache 2.X HTTP server with the 

PHP and SSL modules installed, making the server-client connection secure. The application 

makes certain REST-like queries to the gateway, it makes parameter requests and receives the 

data in JSON format. This format is preferred over other representation protocols because it 

integrates very well with JavaScript environments and many frameworks offer support for it. For 

example, when a user wants to observe the live variations in sensors data, a request is sent to 

the server by the Android application. The server responds with an HTML page containing a 

graphic configured with the parameters we sent. The page is displayed in an Android WebView 

control. 

After the plot is configured, a script makes periodic XHR (XmlHttpRequests) to the 

server requesting the current reading for a named sensor within certain measurement unit. When 

the readings for all the sensors have been updated, the graphs are redrawn. The sensors data is 

encoded in JSON format: 

 

name: <sensor_name>, 

data:  [<server_time>, <sensor_value>] 

 

 

 
Figure 72. Android monitoring application 
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6.1.6.2 Online Monitoring 

 

We developed a method for monitoring and controlling a WSN remotely over the 

Internet, based on the successful MonALISA framework [128]. Our method uses an abstraction 

layer to provide remote monitoring and control to essentially any kind of WSN. MonALISA is a 

joint development of CERN, Caltech and UPB, typically used in monitoring large- scale systems 

such as computer clusters. It can be used to monitor and control any kind of system, including 

WSNs, as long as the appropriate interfacing software is available. In short, MonALISA 

employs repositories to which data can  be  sent  remotely  using  a  portable  software  module 

named ApMon (Application Monitor) and to which users can  connect  with  graphical  client  

programs  to  view  the data  remotely.  The connections can be established over the Internet, 

allowing user access to the WSN from any location, or over a local area network. Data in 

MonALISA is organized as parameter-value pairs pertaining to a ‖host‖ or ‖node‖. Hosts are 

grouped into clusters, which are grouped into farms. 

Each mote is presented as a host-type entity with a list of parameters. The name of the 

host is the IPv6 address and parameters include any sensor data that the mote provides 

(temperature, voltage, current). The user can filter parameters by name in order to concentrate 

on data of immediate concern. 

The parameters are sampled at defined intervals by the ApMon script and sent to 

MonALISA. The sensor data is made available on the graphic client in near real-time (delayed 

by storing the data on the various repositories), viewable from any point in the Internet. 

6.1.7 Conclusions 
 

We presented a new wireless sensor network architecture that was especially designed to 

be employed in home automation. Our system employs the concept of energy harvesting to 

maximize network lifetime and availability, an idea which is novel to the field of home 

automation.  

The future work we envision for this system involves setting up the actuation 

infrastructure.  Since the REST- like interface is already in place, this would only require 

tweaking the communication between motes and gateway to include this feature. Our 

customization interface can then be extended to include automation rules. 
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6.2 Mobile Pollution Monitoring 
 

In this section we present a mobile system for air quality and pollution measurement 

suited for the urban environment [129]. We designed, tested and built a reliable 

measurement device that  can  acquire  information about  the  air  quality  of its 

surroundings, store  it in a temporary memory  buffer  and periodically  relay it to a central  

on-line repository. Real-time gathered data can be freely accessed by the public through an 

on-line web interface.  Users can select and view different gases and concentrations 

overlapped on a map of the city. 

One of the major environmental concerns of our time is air pollution. Apart from 

severely degrading the natural environment, air pollution directly affects our health. Short term 

and long term effects range from light allergic reactions - irritation of the nose, throat and eyes - 

to serious conditions like bronchitis, pneumonia, aggravated asthma, lung and heart diseases. Air 

pollution is also the cause of many premature deaths (50,000 to 100,000 deaths per year in the 

U.S. alone, 300,000 in the EU and over 3,000,000 worldwide [130], [131], [132]. 

We propose a system that provides live access information about air quality in crowded 

urban areas such as crossroads or highways. The goal is to monitor the air quality by designing a 

system that can actively pinpoint pollution sources and polluted areas in traffic. 

The solution offered by our system relies on a portable device that can detect an 

abnormally high concentration of an air pollutant. The device records the measured data along 

with location coordinates and can periodically transfer it to a computer through a wireless 

GPRS connection. With the user’s acceptance, the application can share the data that will be 

displayed on a dedicated web site. As a result, the system’s user - and the entire community - 

can benefit from a potentially wide information-gathering network. 

Probably the best approach to solving the environmental problems caused by air 

pollution is to make people aware of it and of their actions that possibly favor it. Our system 

does just that by gathering and publishing meaningful and up-to-date information. This is the 

result of people using our devices and sharing the measured data. 

Some sources of information on air pollution already exist and are publicly available 

[ 133] ,  [ 134] ,  [ 135] . However, they do not cover the entire monitored area as they are 

based on measurements performed at fixed locations. Thus, it is not easy to discover localized 

pollution sources. Our system has the potential of collecting much more data than a traditional 

one due to its multi-agent architecture. The more users in the system, the larger the area 

covered will be and better granularity. In addition, our devices could be installed on public 

transportation vehicles in order to provide an accurate overview of the pollution generated by 

traffic. 
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6.2.1 Air Quality 
 

Engine exhaust consists of various gases and particulate emission, which in turn consist 

of various inorganic and organic compounds with great molecular weight. Their composition 

depends on driving condition, engine type, gas emission controller, operational temperature, 

and other factors, all of which make the emission pattern more complicated. The type of 

pollutant emitted by the engine fueled with gasoline compared to the one fueled with diesel is 

similar; the difference is in its proportion because of differences in engine operation. 

Although engine exhaust gas consists of harmless compounds such as nitrogen, carbon 

dioxide, and water vapor, it also contains chemical compounds that are harmful to humans and 

to the environment alike. These compounds are carbon monoxide (CO), various hydrocarbon 

compounds, various oxides of nitrogen (NOx ), oxides of sulfur (SOx), and dust particles 

including lead (Pb), [136], [137]. Here are the reasons why our Mobile Unit sensors cover the 

above-mentioned compounds: 

 Carbon Monoxide (CO). This is produced when the fuel in the engine does not burn 

properly. Road traffic produces 91% of all CO emissions. Problems caused: When 

inhaled it reduces the oxygen carrying capacity of one’s blood and can cause 

headaches, fatigue, stress, respiratory problems and at high levels - death. 

 Nitrogen Oxides (NOx ). These are produced from the burning of fuel in the engine. 

Road traffic is responsible for 49% of all NOx emissions. Problems caused: NOx 

emissions help to make ’acid rain’. They also combine with hydrocarbons to form low 

level ozone pollution and may contribute to lung disease. 

 Hydrocarbons (HC). These are compounds of hydrogen and carbon and are present in 

petrol and diesel. Benzene is an example. Road traffic is responsible for about 35% of 

all HC emissions. Problems caused: Hydrocarbon emissions are carcinogenic and a 

major ingredient of smog. 

Bearing all these aspects into mind, it comes as a consequence that our sensors measure 

these pollutant factors right from the emission source. The data gathered must on the one hand 

be compared to the admitted levels (in Europe, there is the Euro standard) and on the other hand 

recorded locally onto the vehicle itself. A bare 256 MB non-volatile memory card suited on each 

Mobile Unit can record for as much as several years’ emissions log. 

6.2.2 System Overview 
 

Our system is comprised two major components: 

 a mobile client, called the Mobile Unit 

 an on-line web server 
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The Mobile Unit, or MU, is entrusted with harvesting the information from the 

sensors enclosed; the parameters are: combustible gas, carbon monoxide, temperature, air 

contaminants and gasoline / diesel exhaust. The various parameter levels are transmitted by a 

GSM link to the web server and displayed live on a liquid crystal display. 

The On-line Web Server provides user access to pollution statistics. It queries the 

database and reveals the information gathered at a certain time of day in a specific location. 

Multiple recordings of geographical locations that are in close time and space proximity are 

averaged. As a consequence, there is a tighter control over mobile sources of pollution which 

until now, could not be managed remotely. 

6.2.3 Mobile Unit Design 
 

The Mobile Unit has been designed and built according to the project’s specifications. 

Being a mobile device, meant to be embedded onto a car, it relies solely on the car’s power 

supply. The entire system can be easily included into the car’s onboard computer, and the live 

information on polluting parameters could be provided to the driver through the dashboard 

display. As it is built to measure exhaust gas concentration, the Mobile Unit will be powered 

up only when the engine of the car is running. 

The device must be exposed to a clear airflow so that it can properly take readings. In 

order to fulfill this requirement the sensors are placed in a separate case which can be attached 

to the outside chassis of the vehicle using magnetic clips. 

 

Figure 73. Overview of the information flow in the system 
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1) The Main Module: The Main Module is a control unit that implements the functionality of 

the device. It is build around a microcontroller and its main purposes are: 

 control the data acquisition from the sensors 

 record and store the data measured by the sensors 

 display sensor data in a graphical form on the LCD display 

 direct the communication between the device and the data server over the GPRS data 

link 

2) The Data Acquisition Module: This module measures the concentrations of different gases 

and converts them to a format understood by the main module. Because uniform access to the 

sensors was required, the module has a Sensor Interface.  The device is equipped with three 

sensor slots that can accommodate various sensors. One of the most important aspects of the 

device is the fact that the sensors are pluggable: the user can select from various types of sensors  

 

Figure 74 Mobile Unit hardware diagram 

the ones that are most relevant to his situation and plug them into the device. A list of sensors 

that our device currently supports and the associated health threats includes sensors for the 

following pollutants: 
 

 Carbon monoxide - generated by incomplete combustion of carbon - even relatively 

small amounts of it can lead to hypoxic injury, neurological damage, and possibly 

death [138]; 

 Ammonia - one of the most widespread gases - children with asthma may be 

particularly sensitive to ammonia fumes; also a significant part of respiratory 



133 

 

allergies are related to this gas and prolonged exposure to ammonia may cause 

nasopharyngeal and tracheal burns, bronchiolar and alveolar edema, and airway 

destruction resulting in respiratory distress or failure [139]; 

 Hydrogen sulfide - generated by bacteria as part of organic material decomposing - can 

cause asthma attacks, eye, throat and lung irritation, nausea, headache, nasal blockage, 

sleeping difficulties, weight loss and chest pain [140]; 

 Gasoline and diesel exhaust - major pollutants of populated areas - exposure to this 

mixture may result in asthma attacks, increase likelihood of cancer, chronic 

exacerbation of asthma and other health problems [141]; 

 Natural gas, propane, methane and other petroleum derivative gases - essentially fossil 

fuels - that can cause irritations to the upper respiratory tract or, in contact to a source 

of heat, can provoke fires and explosions [142]. 

 Carbon dioxide and general indoor pollutants - generated by a multitude of human 

activity - indirectly increase the likelihood of asthma attacks and may cause a rise in 

asthma cases among children [143]. 

Thick film metal oxide semi-conductor sensors from Figaro [144] were the preferred 

choice for our system, because of their good sensitivity to target gases, simple interface 

circuitry, low cost and long life. 

Because the sensors’ output values depend on the temperature of the environment, a 

temperature sensor is used to obtain this information and adjust measured values accordingly. 

Gas Type Measurement 

Range 

Sensitivity Response  Time 
CO2 350−10000ppm 350ppm 1.5min 

NOx 0.1−10ppm 0.3ppm 30s 

CO, HC 10 − 1000ppm 10ppm 30s 

NH4 30 − 300ppm 50ppm 2min 

Table 8. Sensor specifications 

In order to provide an accurate description of the pollutant agents’ situation in a 

geographical area, the device is equipped with a GPS module that has an embedded antenna. 

When GPS connectivity is available, the records will have the current geographical coordinates 

marked. When the GPS signal is blocked, the geographical locations for the records are 

interpolated based on the coordinates immediately before and after the hiatus. For performance 

considerations, the system performs the interpolation in the on-line application. Along with the 

geographical coordinates and the recorded values of the pollutant gases, the time and date of 

the data acquisition must be recorded. This is done by a real-time clock chip. The module also 

contains a backup battery. When the device is on, the main power module powers the clock 

chip. If the power module is unavailable, the backup battery takes up the power supply 

function. The internal clock is synchronized with the real-time clock of the GPS whenever 

a GPS connection is available. 
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3) The Data  Storage Module:  One of the requirements for the Mobile Unit is to store the 

measured data together with contextual information such as geographical coordinates and time. 

We have installed a SD Card Interface, which allows the connection of any commercially 

available memory card, thus providing the device with virtually infinite storage space. The Serial 

Peripheral Interface (SPI) protocol is used to address the memory. 

4) The User Interface Module:  This module provides a way for the device to display real-

time measurements from the sensors and GPS module. It also displays information about GSM 

connectivity and can signal if certain air pollutant values have crossed a preset threshold. 

5) The GSM Module:  The GSM Module serves as an interface between the device and the 

PC. It is built around a WAVECOM dual band GSM/GPRS modem that can stream sensor data 

over the existing cellular network. 

6) The Power Module:  The power source is a 3.6V Li- Ion cell mobile phone battery. All of 

the electronic devices are powered directly from the battery. The sensors, however, require a 5V 

power supply. A DC-DC converter is used to achieve this. The module also has a circuit that can 

recharge the depleted battery from an external DC adapter. 

6.2.4 Software Design 
 

The software development for our system is split into two parts - the Mobile Unit 

firmware and the Data Server. On the Mobile Unit side, the software was developed in C, 

using the WinAVR compiler suite for AVR microcontrollers. The server side was developed 

using Flex for the web interface and MySQL for the database that stores sensor and location 

data. 

A. Mobile Unit 

The microcontroller periodically reads sensor data and stores it in the flash memory 

along with the positioning data and time stamp from the GPS module. Sensor data is also 

displayed on the Mobile Unit’s LCD and the user can select viewing instantaneous values or 

historical values for each gas type in the form of a data plot. From the system’s memory, 

gathered data is sent via the GSM/GPRS modem to the server once every hour. 

B. Data Server 

The server is a desktop machine that is permanently connected to the Internet [145] and 

has a GSM modem attached to its USB port. A special daemon was written to interface the 

modem to the MySQL database and to handle data calls from multiple Mobile Units. For data 

visualization, the Flex application queries the database and overlays sensor data on a map of the 

city, using the Google Maps API. Users can browse through the data and display individual gas 

concentrations or all pollutants at the same time. They can also select specific time periods for 

the displayed data or zoom in to see individual measurement point values. 
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Figure 75.   Web interface showing air pollution along some of Bucharest’s busiest streets. Zoom-in 

showing pollution around Unirii Square. 

6.2.5 Testing and Experimental Results 
 

For early prototype testing, we carried static measurements over long periods of time.  

The Mobile Unit was placed in a fixed position on the rooftop of our faculty building and the 

sensors were exposed to the atmosphere. We measured variations in CO2, NOx and CO/HC 

gas concentration over the course of twelve hours. These values were compared to expected 

normal values that occur during daily cycles [146], [134]. 

Our measurements reveal that NOx concentrations were very small and stable around 

0.05ppm. Also, we found that CO2   gas concentration varies during the day-night cycle, 

dropping in value from around 430ppm in the afternoon to 350ppm early in the morning. 

CO and hydrocarbon gas emissions are almost at a constant value throughout the 

period, seeming to drop in the early hours of the morning. This appears to be correlated to the 

decrease in vehicle traffic during the night. 

 

 



136 

 

  
Figure 76. CO2 , NOx  and CO/HC gas concentration variation for a fixed location 

Mobile system testing in traffic was done by installing the Mobile Unit prototype on a 

privately owned car and driving around a predetermined path in the city of Bucharest. In order to 

view the changes in air pollution, measurement sessions were made on the same course but at 

different times of day, both during high traffic hours in the morning and afternoon and with 

little or no road traffic, late at night. 

One example of higher than normal air pollutant concentration can be seen in Figure 75. 

The web page accurately shows an increase in pollution in ‖Unirii‖ area, which is a square 

situated at the convergence of five of the city’s major road traffic arteries. 

6.2.6 Conclusions 
 

Our prototype implementation of the hardware and software proves that the concept is a 

viable solution for air pollution monitoring. It is not universally applicable, as it only measures 

pollution in the areas where people live (most of the times these are the most polluted areas). 

However, this is exactly its intended purpose: to provide relevant information about the areas 

people are actually interested in. 

Many people will immediately benefit from our sys tem : asthmatics, people concerned 

about the air quality, joggers, etc. On the long term, government agencies that regulate and 

impose pollution standards can benefit from the large amounts of data gathered by our system 

which can result in better statistics and understanding of the way pollutants affect the urban 

environment. It can also lead to better air quality management and to pinpoint major pollution 

sources inside of a city. 

Due to its modular design, our system can be extended to offer additional functionality. 

For instance, multiple Mobile Units could be installed on public transportation buses and trams, 

offering an up-to-date and detailed picture of urban pollution. Furthermore, it could use the 

location tracking capabilities of the mobile telephony networks instead of the GPS system. 
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More complex logic could be incorporated in the server application, allowing the 

automated identification of problem areas and possibly the prediction of air pollution patterns and 

expansion, based on meteorological data. 
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Chapter 7  

Conclusions 
 

Although we always presented our research in a top-down manner, this thesis has been 

built from a large number of small steps and iterations. We needed to know how to address the 

issue of energy efficiency for wireless sensor networks and we did that by starting with a 

definition of what wireless sensor networks are, where they are employed and why they are 

needed. 

We set about in defining what are the most important issues that pertain to power 

consumption in sensor networks and we saw that battery life is a crucial parameter along with 

how a sensor node uses the battery energy to power its components and accomplish its intended 

task. A survey of the most common types of circuits, controllers, transceivers and sensors that 

are employed in wireless sensor nodes has been made. We emphasized on the power 

consumption issues associated with each component and found that the greatest culprit for 

energy consumption is not processing, but radio communication. Designing a service that 

minimizes network chatter will automatically increase network lifetime. 

We classified sensor network according to shared features such as deployment scale and 

location, attached infrastructures and lifetime constraints. Based on these properties, we 

categorized sensor networks into three major groups: Environmental Sensor Networks (ESN), 

Community Sensor Networks (CSN) and Body Sensor Networks (BSN), each with its own 

particularities and features. 

We also focused on modeling sensors and actuator networks by classifying them into two 

main categories: the ones defined by standardization entities using XML or text-table values; and 

others using ontologies. 

Energy harvesting was addressed as a solution to energy consumption and battery 

depletion in sensor nodes. We found that, if applied correctly and tailored to specific constraints 

it can serve as viable alternative power source for all classes of sensor networks. We applied a 
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mathematical model to energy harvesting in order to define and better understand it. We 

experimented with and assessed the efficiency of three types of energy harvesters, namely 

piezoelectric, thermal and photovoltaic. The latter proved to have a superior yield and, as a 

consequence, was used in our renewable energy harvesting circuitry. 

We designed and built a new type of wireless sensor node which was based on the results 

we had with our energy harvesting experiments. We studied also energy storage systems at node 

level and found that batteries are not a good solution if aiming for total energy independence and 

extended operational lifetime. We found that supercapacitors offer a solution which is close to 

optimal from the standpoint of efficient charging and energy storage. Further, we employed this 

knowledge in the design of a sensor node which proved our theories regarding energy 

independence. 

This thesis would have not been complete without delving into the software protocols, 

services and frameworks that give wireless sensor networks their purpose and application. We 

designed Check, a novel Management Framework which unifies and supplies different WSAN 

islands with services and extended functionality.  

As an important part of our framework, we implemented a new type of task scheduling 

algorithm in which the main constraint is not task completion time, but energy consumption. We 

modeled and assessed the algorithm’s complexity and behavior when deployed on a given set of 

nodes.  

Another part of the Check framework is the centralized network monitoring, control and 

reconfiguration tool, which we implemented with the goals of scalable internetworking, 

horizontalization and heterogeneity. 

In order to apply the knowledge accumulated during this research and to validate our work, 

we designed and successfully deployed a series of real-life applications, two of which are worth 

noting. The first one is a deployment in a residential environment and studies the components 

and services which a sensor network oriented on home automation needs to offer.  

In the second application, we studied the deployment of mobile sensor nodes in an urban 

environment with the specific task of gathering data and relaying it to a central coordinator. The 

purpose of the project is to measure environmental sensor data, such as air pollution and 

contaminants linked to automotive exhaust and make it available to the general public via a 

intuitive web interface. 

The work has been validated also by the European Commission as the three European 

projects where this software was developed were praised as a success by the evaluators. All the 

work described here was validated through publishing in international and national conferences 

and workshops. 
  Out of the many original contributions enumerated above which are brought to the field 

of wireless sensor networks, we like to enumerate the ones which we think are the most 

important: 
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 A classification of wireless sensor networks was proposed, according to energy 

consumption criteria, such as battery lifetime, node positioning and deployment 

scale. 

 The applicability of energy harvesting to a wireless sensor mote was tested and 

analyzed. Four of the most promising energy sources were researched: vibration, 

thermal, solar and radiofrequency energy scavenging. Each of the four sources 

were analyzed in terms of the total amount of energy produced and their ability to 

ensure the continuous functionality of a sensor node. As a result of this study it 

was determined that solar energy offers the best results both in terms of the 

quantity of harvested energy and in the amount of instantaneous power the system 

can generate when subjected to full illumination. 

 Energy storage mediums were researched from the point of view of their 

applicability to wireless sensor networks. Usual rechargeable batteries were found 

to be sub-optimal when used on a long-term service-free architecture as wireless 

sensor networks. Instead the emerging technology of super-capacitors was 

researched and their ability to store large amounts of charge over long periods, 

without any significant loss of performance over time. 

 A wireless sensor network infrastructure named Sparrow was built to test the 

research concepts of energy harvesting and to serve as the backbone of the 

software protocols and frameworks we developed. It proved that energy 

independence and sustained long term operation are possible when employing 

renewable energy and non-standard energy storage. 

 Two different types of wireless sensor nodes were designed and built to serve as a 

backbone for our wireless sensor network. The nodes implement the concepts of 

energy harvesting studied before and, due to their dedicated power supply circuits, 

are suited to be powered from a wide range of energy sources. 

 A mathematical model for energy consumption estimation in multi-hop wireless 

sensor networks was proposed. The model takes into consideration the topography 

of the network and the radio environment disturbances in order for a node to tune 

its radio transceiver energy consumption to optimum levels. 

 A novel and unconventional scheduling algorithm was developed as part of our 

Check Management Framework in which the main constraint is not time, but 

energy. As sensor networks are rarely subjected to hard deadlines, a more elegant 

approach is to design a scheduling algorithm that prioritizes energy consumption 

and task affinity. Results showed that tasks are scheduled on an energy-optimal 

basis. 

 An innovative method for monitoring and controlling WSN nodes from a 

graphical interface over an Internet connection was proposed, using the successful 

MonALISA framework. Data is gathered from the network and stored in an 

Internet-based repository, from where it can be read remotely using a graphical 
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client program. The interface between the WSN and the Internet services contains 

an abstraction layer, allowing uniform access to nodes built using various 

technologies and running different software and protocols. 

 Our algorithms and hardware were tested and successfully deployed in real-life 

applications in order to validate our assumptions. In the first phase, laboratory 

tests were conducted and the results were carefully analyzed and integrated into 

future revisions of the hardware and software platforms. After this phase, the 

wireless sensor network platform was tested and two different application spaces 

were selected, the large-scale urban environment and the smaller scale home 

automation environment. 

 A new wireless sensor network architecture especially designed for the task of 

home automation was built and tested. The system relies on a low power 

WS&AN that employs energy  harvesting techniques to maximize node lifetime 

and an embedded residential gateway that offers user interaction and secure 

connectivity to the outside world. The advantages of this system are its 

scalability, low power, self sufficiency and versatility. 

 A mobile system for air quality and pollution measurement suited for the 

urban environment was developed. The system is based on a reliable 

measurement device that  can  acquire  information about  the  air  quality  of 

its surroundings, store  it in a temporary memory  buffer  and periodically  

relay it to a central on-line repository. Real-time gathered data can be freely 

accessed by the public through an on-line web interface.  Users can select and 

view different gases and concentrations overlapped on a map of the city. 
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7.1 Future Work 
 

One of the future research goals for this project is testing the network in real life 

conditions over long periods of time. For this, the nodes that are equipped with energy 

scavenging capabilities will be deployed in a remote area (i.e. forest, urban area, building) and 

performance measurements will be taken. Different power management schemes and algorithms 

can also be deployed to aid the total system up-time.   

 Another important research question that has not been properly addressed in this study is 

that of network behavior to node failure. Because nodes are subjected to different types of failure 

(i.e. mechanical, electrical, lack of sufficient energy, software malfunctions), data gathered from 

their sensors may be lost. Proper self-healing algorithms must be deployed on the WSN in order 

for it to automatically detect a node failure and, if possible, take corrective actions to avoid a 

decrease in performance. 

Also, an important research topic in which research can be further developed is network 

security. As wireless sensor networks are installed in human environments and due to the fact 

that sensors typically communicate over the air, there is always a certain danger that information 

can be accessed and modified by unauthorized parties. The research question is how can we 

provide a platform for an efficient, secure and reliable integration of sensor networks into large 

scale industrial environments.  

As pervasive computing applications in wireless sensor networks are just beginning to be 

implemented on a commercial scale, we believe that there are still many research topics to be 

approached and many interesting questions to be discovered. The best, as always, are the ones 

we do not yet have an answer for. 
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