

Sisteme Încorporate

Cursul 13

Wearable Computing

Facultatea de Automatică și Calculatoare Universitatea Politehnica București

A wearable device is a computer that is subsumed into the personal space of a user, controlled by the user, and has both operational and interactional constancy, i.e., is always on and always accessible.

Wearable History

Forms

- Head-mounted (glass, helmet..)
- Body-dressed (coat, underwear, trousers..)
- Hand-worn (watch, bracelet, gloves..)
- Foot-worn (shoes, socks..)

Functions

- Healthy living (sports wrist band, smart bracelet..)
- Information consulting (smart glass, smart watch..)
- Somatosensory Control (somatosensory controller..)

- In 2013, investors poured \$458 million into 49 wearable company deals (*CB Insights*)
- \$139 Billion Industry in 2022
- Expected to triple in size by 2030
- Major tech companies like Apple, Google, Samsung and Intel investing heavily in wearables, with non-tech giants like Nike, Under Armour, Adidas, Fossil, Timex etc.

- Used while the wearer is in motion
- Used while one or both hands are free or occupied with tasks
- Exist within the corporeal envelope of the user
 - Not merely attached to the body but becomes and integral part of the person's clothing
- Allows the user to maintain control
- (Should be) constantly available

Some interesting issues

Popularity Example

Pebble

Kickstarter Campaign

4:15_{PM}

6:30pm

SF 11 CO 8 Final

Sales Meeting

岱

⊕

- Seeks : \$100K
- Raises : \$10+ Million

twelve thirty

- Faster and Cheaper Hardware
- Cloud Storage
- Location Data
- Quantified Self Activity
- Gaming Industry
- Visual & Voice Technology
- User Experience

slide 10

State-of-the-art

Hardware

What is (typically) inside a wearable?

Apple Watch

https://www.ifixit.com/News/53688/three-former-apple-engineershelped-us-tear-down-apple-watch-series-7

https://www.techinsights.com/blog/apple-watch-series-3-teardown

Jawbone (Activity Monitor)

RECHARGEABLE BATTERY

Up to 10 days of use on a single charge.

VIBRATION MOTOR

Powers your silent alarm clock & reminds you to move.

PRECISION MOTION SENSOR

Accurately tracks your movement and sleep activity.

3.5MM PLUG

Syncs your band with the app on your phone.

SWEAT-PROOF & WATER-RESISTANT*

Wear the band while showering or working out.

Water-resistant up to 1m.

MotionX®

Fitbit Charge 5 (Fitness Tracker)

Fitbit Charge 5 – main board

- 1.02 inch OLED touchscreen
- ARM M-4 microprocessor
- Heart rate monitor and sensor

- TI AFE for heart rate monitor and biosensor
- TI's load switch, LDO regulator, haptic driver & 600 mA step-down converter
- Zinitix's DC-DC controller
- ST Microelectronics' 300 mA LDO regulator, three-axis MEMS accelerometer

Oura (Smart Ring)

Unknown

IR LED Driver (?)

BQ25155 (?)

Texas Instruments

Battery Management IC

Unknown

Unknown

IR LED Driver (?)

Apple AirPods (Smart Headphones)

Apple AirPods (Smart Headphones)

- Apple 343S00289 (likely Apple's new H1 chip)
- Dialog Semiconductor (Formerly Adesto) <u>AT25SL128</u> 128 Mb serial flash memory
- Apple 338S00420 (likely a lowpower stereo audio codec)
- Bosch Sensortec <u>BMA280</u> 3-axis accelerometer (likely)

Apple AirPods (Smart Headphones)

 93mWh battery • T 8 36 (likely **STMicroelectronics** inertial sensor) https://www.ifixit.com/Teardown/AirPods+2+Teardown/121471

Microsal (Smart Dental Implant)

Software

apple.com/watchos/watchos-9

27:04:36

WatchKIT API for developer use

Limited open-source components

• UNIX-like, slimmed down version of iOS

• Released 2015 exclusively for Apple Watch

Mostly closed ecosystem

10:09

tizen.org

Tizen OS

- Open-source OS
- Developed by Intel, Vodafone, Orange, Samsung
- Not exclusively for wearables
- Native HTML5 app support
 HTML, CSS and JS
- Tizen for wearable OS
 - Light version developed by Samsung
- Low footprint
- Optimized battery life

Launched 2014, multiple HW platforms

- 32-bit ARM, x86
- Open-source, closed source components
- Modified Linux kernel
- Multiple partners
 - LG, Asus, Samsung, Sony, Motorola

wearos.google.com

Wear OS

nuttx.apache.org

NuttX

- Open-source RTOS
- Runs on a variety of HW platforms
 From 8-bit AVR to 32-bit ARM
- UNIX-like, POSIX compliant
- Modified versions for trackers & watches

 Fitbit, Xiaomi
- Growing user base and following

Concerns

- Wearables might lead to an improved, better life
- Putting your body online might not always benefit you
- Give whole level characteristics to the service provider not each user level specific information
- Ensure visibility for what the user is sharing
- Human agency and responsibility need to be in the loop

- Wearable Device can be hacked and attacked wirelessly. Patients may die.
- Spoofing and altering are dangerous phenomena which can actually derail the whole purpose. May create panic.
- Side channel attack through power trace analysis is possible.

Energy

- Main reason applications on wearables are limited
- A lot of R&D effort spent at all levels (HW+SW) to solve this issue
- Main trends
 - Processors become more and more efficient smaller nm technologies for ICs
 - Software becomes more and more optimized double-edged sword
 - New energy sources become attractive wearable might end up powered by you

- Too much personalization or assistance will repel users
- Users will be overwhelmed by the huge amount of data and can easily be panicked by misinterpreting any vital health data
- May curb creativity and reduce recall rate

What comes next?

- Move towards seamless integration with other systems
- Market becomes more consolidated and standardized
- Advanced sensing neural link, health assessment
- Metaverse?

- "I expect to see edible computers pills, which will act like little medical monitors, downloading information about your state of health to a computer you wear."
 - Nicholas Negroponte, MIT Media Lab, 1999
- Technology already small enough to become implantable, only limitation is battery life