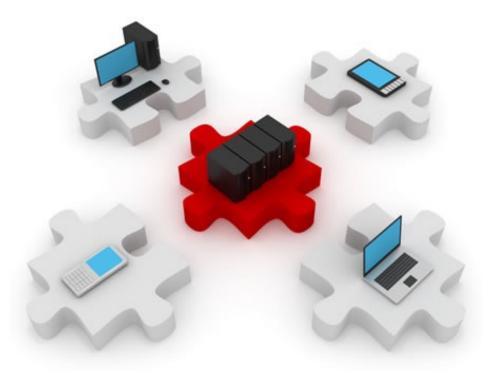


Endpoint Security Layer 2 Security


November 25, 2014

Securing hosts inside a network

Hosts & servers

Layer 2 attacks

- On the network
- On its devices

Endpoint Security

A secure network is only as strong as its weakest link

Securing "inside" and "outside"

- You know about securing the perimeter of a network against outside threats:
 - ACLs
 - CBAC
 - > ZPF
 - TCP intercept
 - IDS/IPS: NIPS
- Internal threats are there, too
 - How well can you control who accesses your internal network?

Big-picture strategy for endpoint security

NAC (Network Access Control)

- A solution that requires every endpoint to comply with company policies
- Non-compliant endpoints are denied access

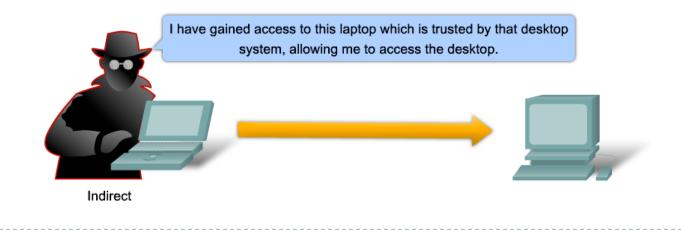
Endpoint protection using HIPS

- Implemented using CSA (Cisco Security Agent)
- Complemented by IronPort Perimeter Security Appliances

Network infection containment

- Before stopping an attack, containment in required
- Must be an automated process
- Implemented as a NAC or IPS service

Operating system security


- Protecting an endpoint is protecting its services and applications
- Ultimately, an operating system has full access over a host
- Protecting the operating system becomes a priority
- OS'es have basic security features like:
 - Processes independent address spaces
 - Privileges execution must be made from a user account with sufficient privileges
 - Least privilege concept
 - Applies to processes and users, as well

Gaining access: directly and indirectly

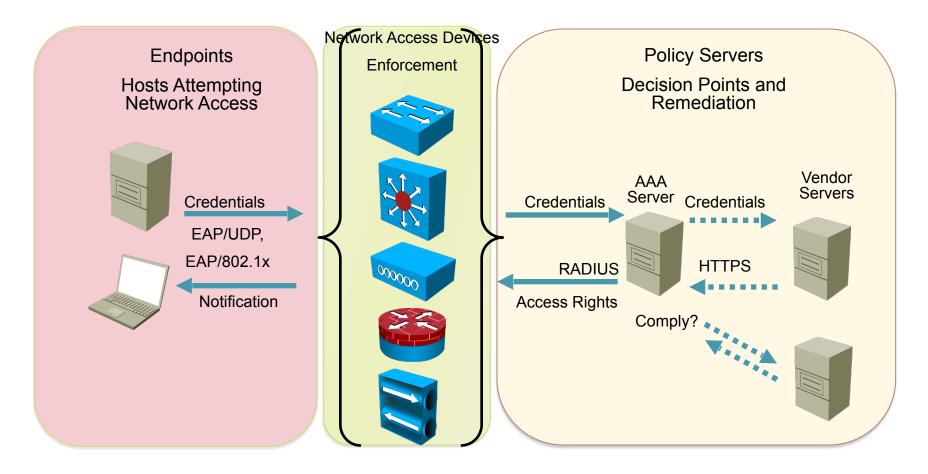
- Security must be viewed from a network perspective, too
- Hosts have privileges and can be "trusted", too

Direct

Strategy: NAC - Network Access Control

- NAC provides several features in order to enforce a network security policy:
 - Authentication and authorization
 - Evaluating a foreign device against the policies of the network
 - Quarantining of non-compliant systems
 - Remediation of non-compliant systems

Strategy: NAC - Network Access Control


- Purpose: ensure that only authenticated and policycompliant hosts are given access to the network.
 - Protects against foreign devices such as laptops, PDAs, smartphones
 - Not only "guest" devices, but also devices from your company that have gone off-site and might have become infected
 - These devices can infect a network from inside the perimeter
 - Network Intrusion Prevention System (NIPS) doesn't help here

Cisco NAC

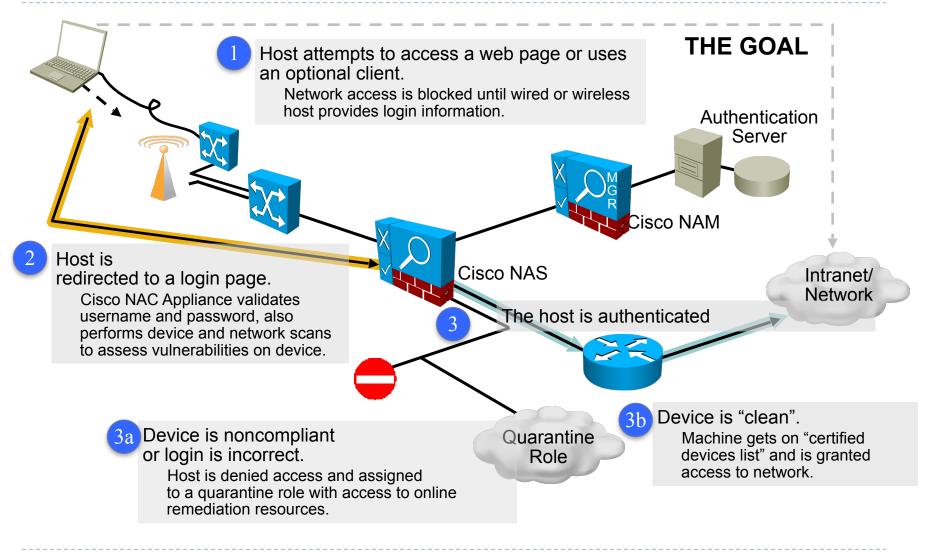
- Cisco implements NAC in two logical models:
 - NAC framework
 - Distributed solution, for large networks, many network connections and many endpoints.
 - Suited for remote access solutions, too
 - NAC appliance
 - Simplified solution, self-contained
 - Anti-virus and vulnerability updates
 - Can be used on any Cisco platform
 - Turnkey solution

Cisco NAC framework - distributed solution

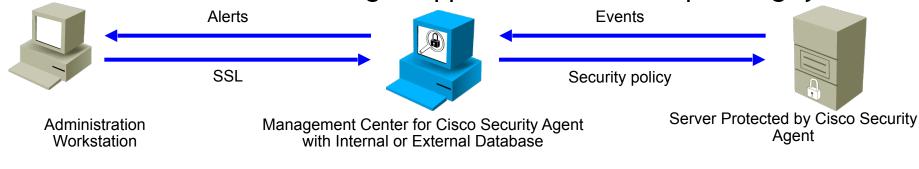
Several devices enforcing different security policies

Cisco NAC appliance

- Cisco NAC components:
 - NAS (NAC Appliance Server)
 - Stores network security policies
 - Performs device-compliance checks
 - NAM (NAC Appliance Manager)
 - Administration interface used by support personnel
 - Allows configuration of NAS
 - NAA (NAC Appliance Agent)
 - Software client, runs on endpoint machines
 - Read-only rights over the operating system
 - Performs constant deep inspection and analysis



How does Cisco NAC appliance work?


HIPS solution: Cisco Security Agent (CSA)

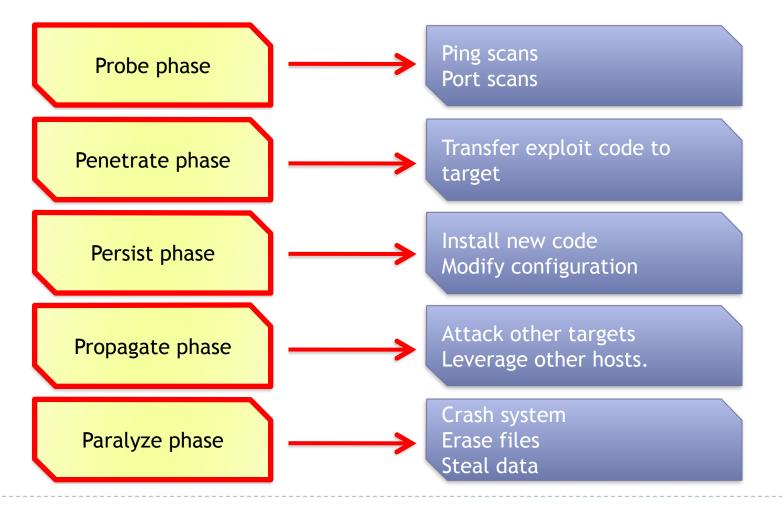
CSA - HIPS solution providing endpoint security

Installed on desktop and server systems

Components:

- Management center for CSA
 - Administrative interface, maintains logs for alerts sent by clients
- Cisco Security Agent
 - Installed on host system
 - Continuous monitoring of applications and the operating system

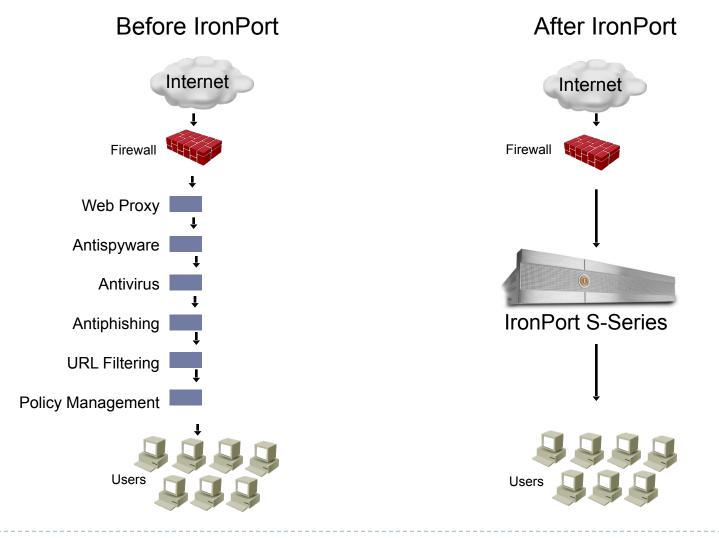
CSA functionality

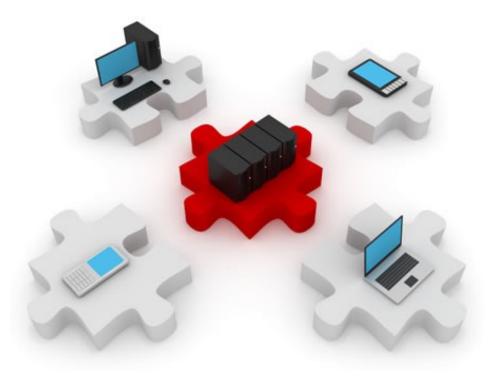

- When applications require system resources, they make a system call to the kernel
- CSA intercepts system calls and compares them to the system policy
- If the request violates the policy:
 - CSA blocks it
 - Sends an appropriate error message to the application
 - Sends an alert to the Management Center

CSA intercept feature

- CSA intercepts operating system calls using four specialized interceptors:
 - File system interceptor: read/write requests to all file systems
 - Network interceptor: inspects network traffic; can force limitations to protect from DoS attacks
 - Configuration interceptor: read/write requests to the operating system's configuration (like the registry)
 - Execution space interceptor: protects the dynamic runtime environment
 - Blocks requests to memory that is not owned by an application

CSA security features


CSA enables protection against all phases of an attack:



Strategy: IronPort

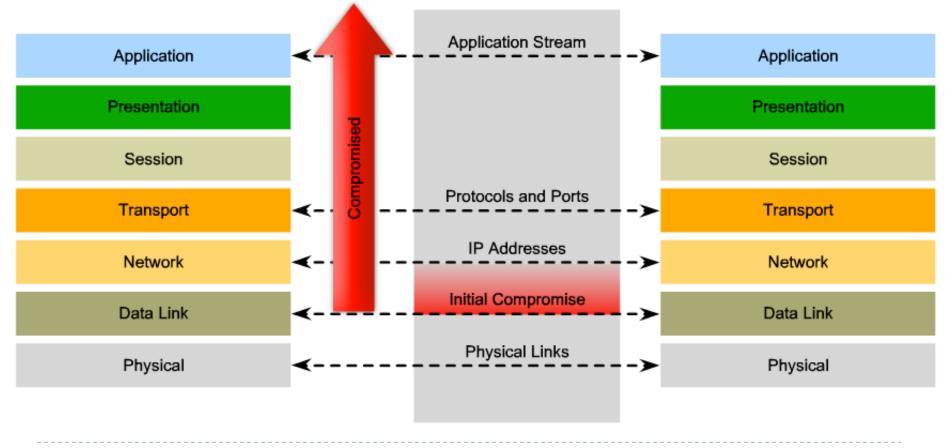
- Acquired by Cisco in 2007
- Leading provider of anti-spam, anti-virus, antispyware appliances
- C-series: e-mail security, virus and spam control
- S-series: web security, anti-spyware, anti-malware
- M-series: e-mail, web and organization-specific policies

Strategy: IronPort combined functionality

Layer 2 security

The lowest link that can prove to be the weakest.

This section will cover:

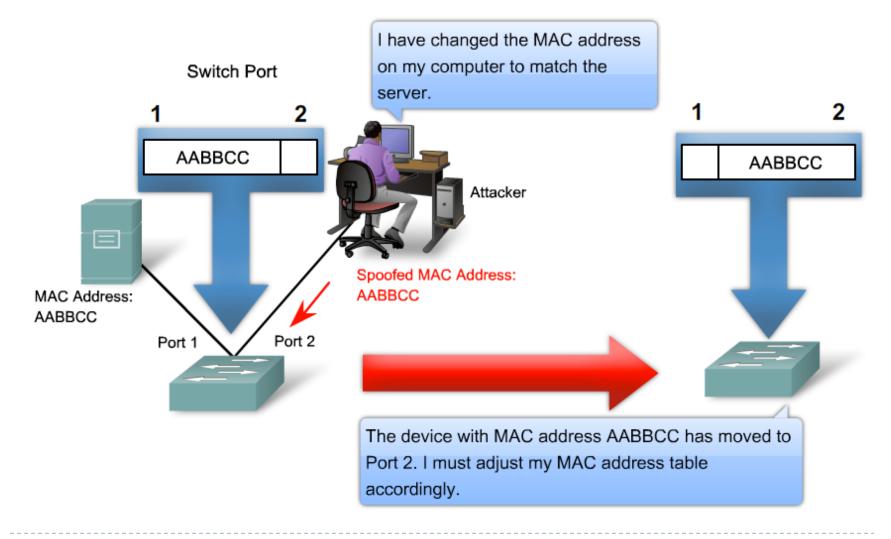

Layer 2 attack methods:

- MAC address spoofing
- STP manipulation
- MAC table overflow
- LAN storms
- VLAN attacks

• Also, a little brief recap of the LAN technologies

Compromising layer 2 compromises all layers

If the data link layer is hacked, the other layers will not be aware


Switched networks

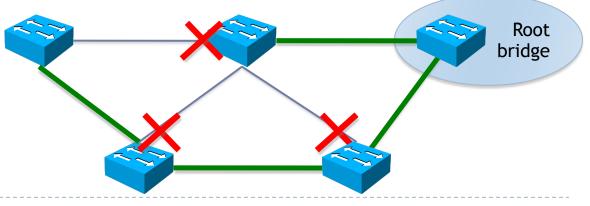
- A hub is an intermediary device that forwards data to all ports except the one it was received
- Switches optimize this behaviour:
 - They forward data on specific ports, based on destination MAC addresses
 - So, switches must learn on which port is each MAC address located. The CAM memory stores these mappings
 - How does a switch learn about MAC addresses?
- Can a switch learn a MAC address on more than one port?
- Can a switch learn more than one MAC address per port?
 - Give an example. When?

MAC spoofing

- The way switches learn MAC addresses is a vulnerability by itself
- Hosts can use another MAC address to impersonate another device and "fool" the switch
 - The switch receives frames with the spoofed MAC address
 - It look at the source address and learns it on a different port.
 - The switch updates its CAM table and maps the old MAC address on the new port
 - Frames destined to the target host are now sent to the attacking host

Example: MAC address spoofing

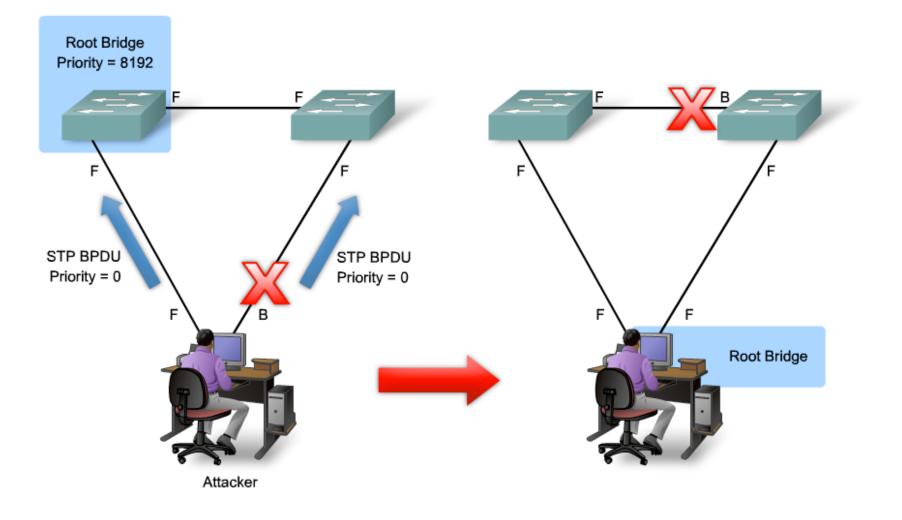
MAC address table overflow attack


- A switch stores MAC-port mappings in its CAM memory
 - Which, of course, is limited...
- Flooding a switch with many fake (spoofed) source MAC addresses will fill up this memory
 - Having its memory full, the switch cannot learn new MAC addresses
 - What does a switch do when it does not have the destination MAC address in its memory? (what would YOU do?)
- The switch will start acting like a hub
- Any attacker will be able to sniff traffic between any two hosts in the network

STP quick recap

- STP = Spanning Tree Protocol
- ► A Protocol that Spans Trees over your local network ☺
- The MAC address learning method used by switches does not work if there is a loop in the network
- Also, loops in a LAN can cause:
 - Data cycling indefinitely in the loop
 - MAC address table inconsistency
- STP creates a loop-free topology (a tree) covering all your switches
- Traffic will flow only on the tree's links

STP facts


- Switches in STP are called "bridges"
- A root bridge is elected based on:
 - Lowest configured priority
 - If the above are equal, the lowest MAC address is the tie breaker (now, if THOSE are equal you've got bigger problems...)
- STP shuts down switch ports in order to create a loop-free path
- In case of failures, closed ports will be opened again
 - Thus, ensuring redundancy

STP manipulation attacks

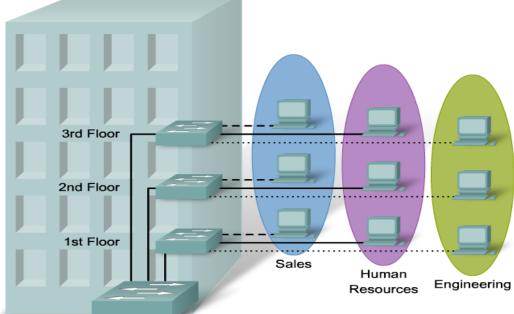
- The election process for the root bridge is carried out using BPDUs
 - A BPDU (Bridge Protocol Data Unit) is a small piece of data exchanged between adjacent switches every 2 seconds
 - It contains relevant data for STP election ad stability
- Sending false BPDUs can change the logical topology of the network
 - Attackers can send false BPDUs to make themselves the root bridges and to be able to receive all traffic traversing the network

STP attack: sending the lowest priority: 0

LAN storm attack

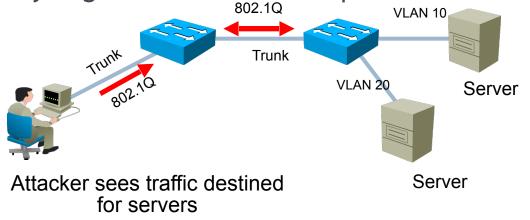
- Broadcasts are vital for a network to function properly.
 - Example protocols: ARP, DHCP
- But flooding a network with broadcast traffic degrades network performance
- Broadcast storm: flooding the network with excessive broadcast traffic
 - Why is this possible?

Because switches forward broadcasts out on all their ports


- Broadcasts cannot be eliminated from the network
- Solution: Storm control (traffic suppression)
 - Monitors unicast, multicast and broadcast traffic on an interface
 - Compares the amount of traffic to a predefined threshold
 - If the number of incoming packets is too high, traffic is blocked
 - Storm control unblocks traffic after a period of time

VLANs and VLAN attacks

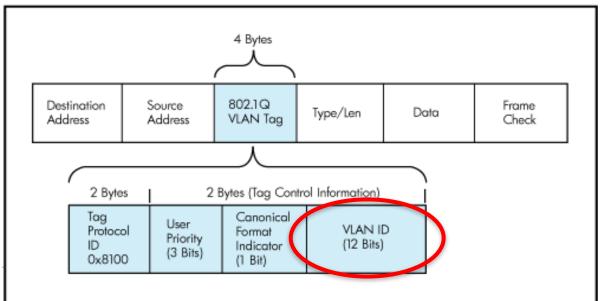
- A VLAN (Virtual LAN) is a logical broadcast domain within a switched network
 - Multiple VLANs appear as different subnets
 - Allow segmentation of the LAN without using routers
 - Hosts cannot communicate between VLANs without a routing-capable device (router, layer 3 switch)
- VLANs are a simple way to securely isolate groups of hosts inside a LAN
- Attempting to gain access to another VLAN is a type of a VLAN attack


VLAN extensibility

- VLANs are not restricted to a single geographical location
 - Inter-switch links that carry more than one VLANs are called trunk links
 - Common trunking protocol: IEEE 802.1q ("dot1q")
 - Ports that connect hosts to a single VLAN are called access ports

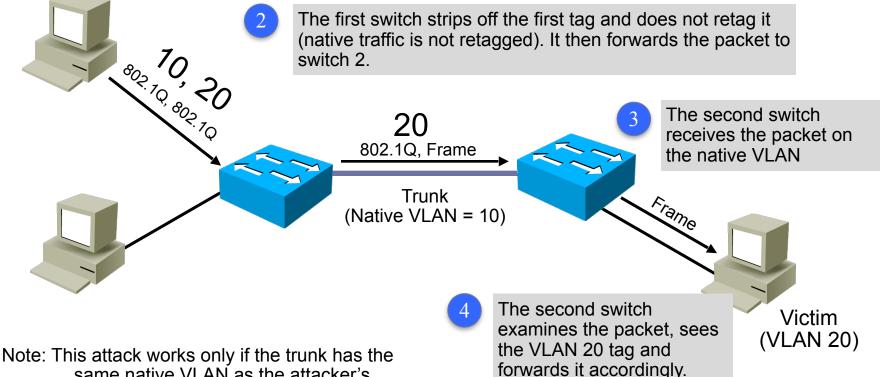
VLAN hopping attacks

- End-users (their hosts) are always members of a single VLAN
- Accessing another VLAN, other than the one assigned to your switch port, is called VLAN hopping
- Method: establish your own trunk link with the switch
 - The trunk link can transport any VLAN
 - DTP (Dynamic Trunking Protocol) is active by default and will automatically negotiate a trunk when possible

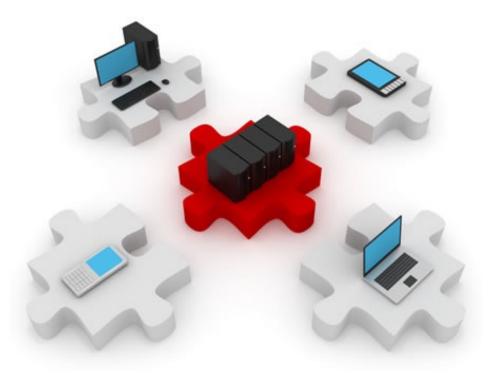


VLAN hopping mitigation

- Unwanted trunk links can be created using:
 - A host that acts like a switch and sends DTP negotiation frames
 - A normal switch, owned by the attacker
- Solution:
 - Disable DTP on ports that do not require trunking
 - Negotiation of a trunk will not be possible any more
 - Preferably, manually enable trunking where needed


Trunks and native VLANs

- When passing over a trunk, a frame must retain its VLAN information
 - So that the end switch will know to which VLAN it belongs to
 - "Tagging" a frame with its VLAN information is done using the dot1q protocol
 - If a frame does not have a tag, it is considered to belong to the "native VLAN" of the trunk link


VLAN hopping: double-tagging

Attacker is on VLAN 10 but also puts a 20 tag in the packet

same native VLAN as the attacker's access VLAN.

38

Configuring Layer 2 Security

Here come the commands...

Overview


Overview of this section:

- Configuring port security
- Verifying port security
- Configuring BPDU Guard and Root Guard
- Configuring Storm Control

Port security

- Port security is a feature that allows you to:
 - Configure the maximum number of MAC addresses a switch can learn on a certain port
 - Statically configure the allowed MAC addresses
- All incoming frames using disallowed MAC addresses are dropped by default
- Protects against:
 - Unauthorized expansion of the network
 - Foreign hosts or switches becoming members of your network

Port security example

Configuring port security

Changing the interface mode to access: [access != trunk] S1(config) #interface FastEthernet 0/24

S1(config-if) #switchport mode access

- The default mode on a switch port (interface) is dynamic auto, which will use DTP to try and dynamically negotiate a trunk on the link
- Port security cannot be enabled on dynamic auto ports
- Activating port security on the interface:

S1(config-if)#switchport port-security

Set the maximum number of MAC addresses that can be learned on the interface:

S1(config-if)#switchport port-security maximum 3

Configuring port security MAC addresses

Specifying one or more MAC addresses that are associated on the interface:

S1(config-if)#switchport port-security mac-address
0026.08de.f22e

- We still have only a maximum of 3 MAC addresses on the interface
- Configuring one MAC address leaves the other 2 to be dynamically learned
- The first MAC address of a sending host will be recorded

Configuring port security actions

The action that is to be taken by the switch port when an invalid source MAC address is detected on the port is called violation

Setting the violation mode: S1(config-if)#switchport port-security violation ? protect Security violation protect mode restrict Security violation restrict mode shutdown Security violation shutdown mode

- Setting the violation mode is optional
 - The default is to shut down the port

Port security violation modes

Protect

- Frames with unknown source addresses are dropped.
- Until you remove some secure MAC addresses or increase the maximum allowed number of addresses to let them pass.
- No notifications are sent.

Restrict

- Frames with unknown source addresses are dropped.
- Until you remove some secure MAC addresses or increase the maximum allowed number of addresses to let them pass.
- Security Violation counter is incremented
- SNMP traps are sent, syslog messages as well.

Shutdown

- Completely shuts down the interface.
- The port is set in the error-disabled state.
- The port has to be manually brought up.
- Sends the same notifications as in Restrict mode.

Witnessing a "shutdown" violation 😳

- A port shutting down after receiving one more MAC address than the maximum allowed:
- 2d17h: %PM-4-ERR_DISABLE: psecure-violation error detected on Fa0/1, putting Fa0/1 in err-disable state
- 2d17h: %PORT_SECURITY-2-PSECURE_VIOLATION: Security violation occurred, caused by MAC address 0019.e792.8321 on port FastEthernet0/1.
- 2d17h: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to down

2d17h: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to down

Checking port state:

SW3(config-if)#do sh ip int brief | incl 0/1 FastEthernet0/1 unassigned YES unset down down

Checking for the error-disabled state:

SW3#show int fa 0/1
FastEthernet0/1 is down, line protocol is down (err-disabled)
Hardware is Fast Ethernet, address is 001a.6cf8.8c01 (bia 001a.6cf8.8c01)

Recovering from a "shutdown" violation

Do not attempt the following:

SW3(config) #int FastEthernet0/1 SW3(config-if) #no shutdown

...as it will have the following "effect":

SW3(config-if)#do sh ip int brief | inc 0/1 FastEthernet0/1 unassigned YES unset down down

Err-disabled state is not really a "shutdown" mode of the interface. Recover by shutting down the interface and bringing it up again:

SW3(config-if)#shutdown
SW3(config-if)#no shutdown
2d17h: %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed
state to up
2d17h: %LINK-3-UPDOWN: Interface FastEthernet0/1, changed state to up

Or, even better, automate this to recover after 60 minutes:

SW3(config)#errdisable recovery cause psecure-violation SW3(config)#errdisable recovery interval 60

The "sticky" ones...

- Dynamically learned MAC addresses are lost after the switch reloads
 - They will be learned again but this could be a security risk
- You can make all dynamically learned MAC addresses "sticky"
 - MAC addresses will still be dynamically learned
 - But they will be automatically saved in the running config SW3 (config-if) #switchport port-security mac-address sticky
- The running-config will automatically include: SW3#sh run | include sticky switchport port-security mac-address sticky switchport port-security mac-address sticky 0019.e792.8321

Aging port security entries

Configuring aging:

SW3(config-if)#switchport port-security aging

Setting the number of minutes after which the entries will age out:

SW3(config-if)#switchport port-security aging time 15

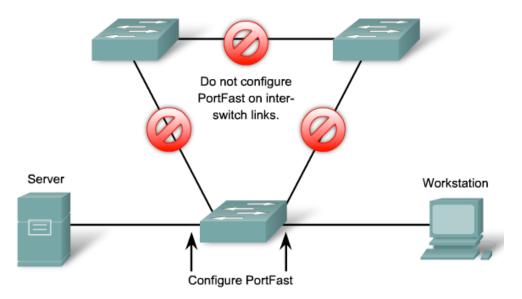
Setting the type of aging:

SW3(config-if)#switchport port-security aging type ?
 absolute Absolute aging (default)
 inactivity Aging based on inactivity time period

- Absolute: entries will age out after 15 minutes
- Inactivity: entries will age out after 15 minutes of inactivity from the specific MAC address

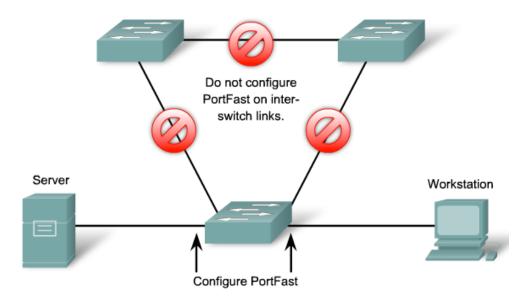
Verifying port security

Secure Port	MaxSecureAddr (Count)	CurrentAddr (Count)	SecurityViolation (Count)	Security Action
 Fa0/1	3	3	0	Shutdown
Fa0/22	3	1	0	Protect


Showing all learned or configured addresses:

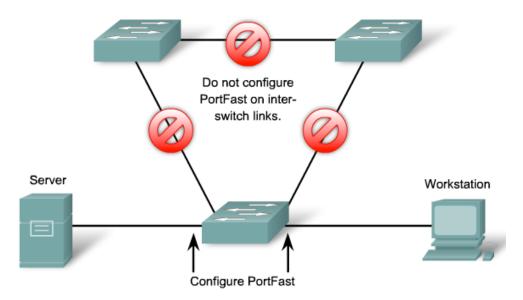
SW3#show port-security address

Secure Mac Address Table


Vlan	Mac Address	Туре	Ports	Remaining Age (mins)
1	0019.e792.8321	SecureSticky	Fa0/1	-
1	0025.bcdc.17b6	SecureConfigured	Fa0/1	11
1	001b.9035.f118	SecureDynamic	Fa0/22	-

PortFast

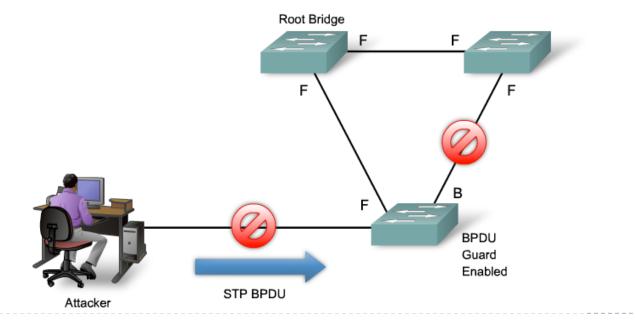
- STP takes time to converge and goes through several states
- The PortFast feature can be enabled on access links to avoid STP calculations on them
 - They are not included in the STP tree, anyway


Configuring PortFast globally

Configuring PortFast on all non-trunking ports at once:

SW3(config)#spanning-tree portfast default

Configuring PortFast at interface level


Enabling PortFast for a specific interface: SW3 (config-if) #spanning-tree portfast

%Portfast has been configured on FastEthernet0/1 but will only have effect when the interface is in a non-trunking mode.

Proof that PortFast cannot work on trunk links

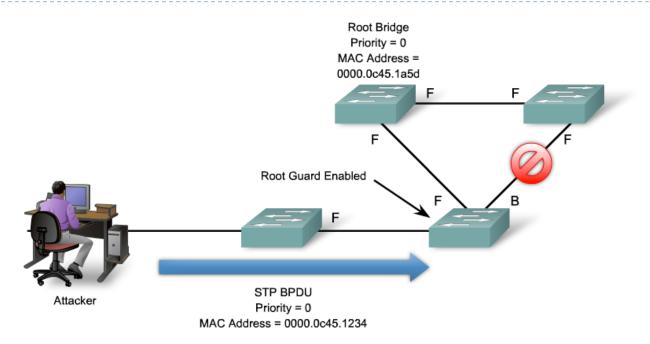
Configuring BPDU guard

- BPDU guard protects the network by blocking BPDUs on ports where they should not be received
 - This way the network topology remains predictable
 - Intruders cannot alter the root bridge of the STP tree
 - Access ports should have BPDU guard enabled

Configuring BPDU guard

BPDU guard is a PortFast feature

By default, BPDU guard will shut down the port if a BPDU is received


Enabling BPDU guard globally on the switch:

SW3(config)#spanning-tree portfast bpduguard default

Verifying:

SW3#show spanning-tree summary Switch is in pvst mode Root bridge for: VLAN0001 Extended system ID is enabled Portfast Default is enabled PortFast BPDU Guard Default is enabled Portfast BPDU Filter Default is disabled Loopguard Default is disabled [...output ommited...]

Root guard

- An attacker can send spoofed BPDUs in an attempt to become the root
- The device connected to the switch port can participate in STP as long as it does not try to become the root
- Root guard puts the port in the root-inconsistent state
 - It automatically recovers when the offending BPDUs stop

Configuring Root guard

- Configuring Root guard on the interface: Switch(config-if)#spanning-tree guard root 00:16:27: %SPANTREE-2-ROOTGUARD_CONFIG_CHANGE: Root guard enabled on port FastEthernet0/1.
- Root guard should be configured on ports that do not lead to the root switch
- To view port states use:

Switch#show spanning-tree inconsistentports

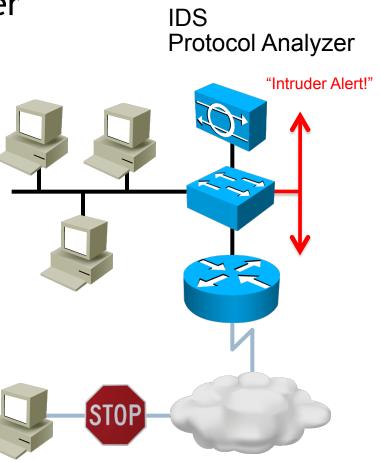
- BTW: sending BPDUs with a priority of 0 does not guarantee that you will become the root bridge
 - Some other switches might exist, with 0 priority and a lower MAC address

Configuring storm control

- Example scenarios for configuring storm control:
 - Block broadcast packets over 75.55% of the interface's capacity:

sW(config-if)#storm-control broadcast level 75.55

- You can specify upper and lower threshold levels
- Block multicast packets that go over 5Mbps: sW(config-if)#storm-control multicast level bps 5000000
- Configure the interface to shut down (err-disabled) when either storm control violation occurs: sw(config-if)#storm-control action shutdown
- The default is to filter broadcasts


Verifying storm control

Show storm control status:

SW3# show	storm-control				
Interface	Filter State	Upper	Lower	Current	
Gi0/1	Forwarding	20 pps	10 pps	5 pps	
Gi0/2	Forwarding	50.00%	40.00%	0.00%	
<pre><output omitted=""></output></pre>					

Monitoring with SPAN

- SPAN = Switched Port ANalyzer
- A SPAN port mirrors traffic to another port
 - Monitors the entire interface (port) or a single VLAN
 - Monitors inbound and/or outbound traffic
- Ideal deployment for IDS systems
- Does not affect normal switching operation

Configuring SPAN - Example #1

The "monitor session" command:

Setting the source interface to monitor: Switch(config) # monitor session 1 source interface gigabitethernet0/1

Setting the destination interface, where traffic will be mirrored:

Switch(config)# monitor session 1 destination interface
gigabitethernet0/2 encapsulation replicate

The "encapsulation" parameter tells the switch to mirror traffic while retaining the same encapsulation method

Configuring SPAN - Example #2

The following example monitors only two VLANs:

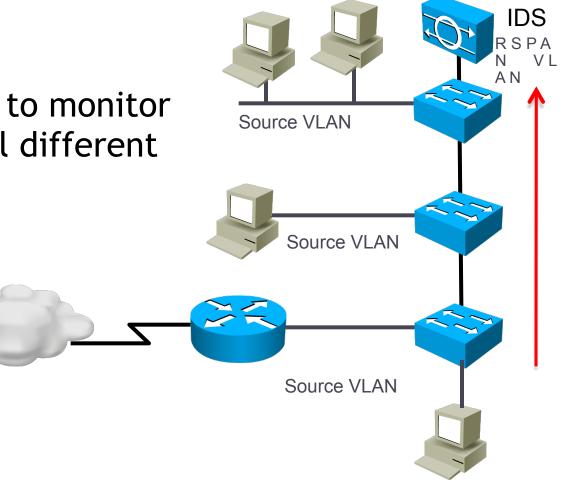
Mirror only received traffic on VLAN 10: Switch(config) # monitor session 1 source vlan 10 rx

Mirror only sent traffic on VLAN 20: Switch(config) # monitor session 1 source vlan 20 tx

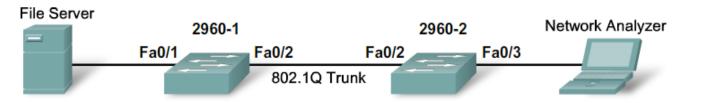
The destination is still an interface: Switch(config) # monitor session 1 destination interface FastEthernet 0/1

Viewing SPAN configuration

Use the "show monitor" command to view configuration info about all monitor sessions:


<pre>#show monitor sess:</pre>	ion 1
Session 1	
Source Ports:	
RX Only:	None
TX Only:	None
Both:	Fa0/2
Destination Ports:	Fa0/3

Monitoring with RSPAN


- RSPAN = Remote SPAN
- SPAN mirrors traffic between ports on the same switch
- RSPAN mirrors traffic to a port on a different switch
- This way, traffic from multiple switches can be mirrored to a single destination
 - Multiple traffic flows can be monitored at the same time
 - Using the same IDS

RSPAN deployment

 RSPAN can be used to monitor traffic from several different VLANs

Configuring RSPAN

Create the RSPAN VLAN on both switches:

2960-1(config)# vlan 100 2960-1(config-vlan)# remote-span 2960-1(config-vlan)# exit

Configure RSPAN source ports and VLANs:

2960-1(config) # monitor session 1 source interface FastEthernet 0/1
2960-1(config) # monitor session 1 destination remote vlan 100
reflector-port FastEthernet 0/2
2960-1(config) # interface FastEthernet 0/2
2960-1(config-if) # switchport mode trunk

Configure RSPAN traffic to be forwarded:

```
2960-2(config)# monitor session 2 source remote vlan 100
2960-2(config)# monitor session 2 destination interface FastEthernet
0/3
2960-2(config)# interface FastEthernet 0/2
2960-2(config-if)# switchport mode trunk
```

"Security depends not so much upon how much you have, as upon how much you can do without.."

Joseph Wood Crutch