Securizarea avansata a sistemelor de calcul

Side-channel attacks

Marios Choudary UPB

Smartcards used in many applications (e.g. banking)

Other examples: Pay-TV, transport

Microcontroller in smartcards

Microcontrollers "leak" information via physical side-channel

example of leakage: EM, power

Microcontrollers "leak" information via physical side-channel

- We may target:
 - cryptographic algorithms (secret keys)
 - instructions (reverse engineering)
 - data (bus eavesdropping)

CMOS leakage

Typical NAND gate

CMOS leakage

Typical NAND gate

CMOS leakage

Typical NAND gate

Use an oscilloscope to measure power consumption of a microcontroller

Transition of all CMOS gates affect overall power consumption

(loading a value into a register, when the previous value on the bus was 0)

Power consumption of loading one byte with different values

Leakage for one sample

Beginnings of power analysis

Paul Kocher, 1997 (see "Differential Power Analysis", Kocher et al., CRYPTO '98)

1. Select target computation: typically the S-box lookup in a block cipher (DES, AES)

2. Apply "divide et impera":

a good block cipher cannot be brute-forced due to large key size: ($AES \ge 128 \ bits$)

=> we target one byte at a time: reduce brute-force from 2¹²⁸ to 16*2⁸ (in best case)

4. Split samples based on the value of some bit b that is a function of k and p

$$b = f(k, p)$$

5. Find k for which difference between average power consumption in the two groups is largest:

$$\Delta_k = (\overline{\text{power}}_{b=0} - \overline{\text{power}}_{b=1})$$

5. Find k for which difference between average power consumption in the two groups is largest:

$$b = f(k, p)$$

$$\Delta_k = \operatorname{avg}(\bigstar) - \operatorname{avg}(\bigstar) \approx 0$$

k=0

5. Find k for which difference between average power consumption in the two groups is largest:

$$b = f(k, p)$$

r/1

1

1

$$\Delta_k = \operatorname{avg}(\bigstar) - \operatorname{avg}(\bigstar) \approx 0$$

b = f(k, p)

b = = 0

5. Find k for which difference between average power consumption in the two groups is largest:

k=42 (correct)
$$\bigstar b==1$$

 0 current [mA]

$$\Delta_k = avg(\bigstar) - avg(\bigstar) = max$$

Figure 4: DPA traces, one correct and two incorrect, with power reference.

[Kocher et al.

Correlation Power Analysis

- Test correlation between actual leakage samples (e.g. obtained with an oscilloscope) and hypothetical leakage (e.g. with Hamming Weight model and key candidate)
- Most common candidate: HW(S-box(p ⊕ k))

Correlation Power Analysis

• Pearson's correlation for 2 variables X, Y:

$$o_{XY} = \frac{\sum_{i=1}^{N} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{N} (x_i - \bar{x})^2} \cdot \sqrt{\sum_{i=1}^{N} (y_i - \bar{y})^2}}$$

- When X, Y are correlated, then ρ_{XY} is high
- Idea for side-channel attacks:
 - Use actual leakage for X
 - Use expected leakage from HW model with candidate k for Y:
 Y = HW(S-box(p⊕k))
 - Compute ρ_{XY} for all possible byte values k and choose k with highest ρ_{XY}

Correlation Power Analysis

Example from attack on real cryptographic ASIC

Figure from https://iis-people.ee.ethz.ch/~kgf/acacia/c3.html

Left: correlation with good key as function of number of traces (N) Right: correlation as a function of key candidate for fixed N

Defences and Secure IC industry

Countermeasures

- Noise generation: try to keep the data-dependent signal below the noise floor
- Randomise computations: make it hard to align traces
- Masking: split data into several shares and compute on those such that leakage does not depend on key/data but on random values
- Dual rail and other special hardware architectures

Industrial impact

- Development of countermeasures (hardware, software) see Infineon, Gemalto, NXP, etc.
- Common Criteria evaluation
- Evaluation and certification laboratories
- National security evaluations
- One evaluation may cost > 100.000 EUR