

Managementul rețelelor

Proiectarea Rețelelor

Universitatea Politehnica București - Proiectarea Rețelelor

Cuprins

- Autentificare, Autorizare şi Accounting
- Descoperirea reţelei
 - CDP
 - NBAR
- Monitorizarea reţelei
 - SNMP
 - NETFLOW
 - SMOKEPING

Universitatea Politehnica București - Proiectarea Rețelelor

autorizarea

3

Autentificarea se poate face pe bază de utilizator şi parolă sau folosind Kerberos 5

IACACST	RADIUS
Cisco server version	Open Standard
ТСР	UDP
Urmărește arhitectura AAA	Combină autentificarea cu

- Server database
- Local database
- Password only
- Tipuri de autentificare

Autentificare

Autorizare

- Implementată de obicei folosind un server de AAA
- Utilizatorul primeşte un set de atribute ce descrie nivelul său de acces în reţea

- Utilizatorul trimite o comandă către ruter
- Ruterul întreabă serverul dacă utilizatorul are dreptul să execute această comandă
- Serverul răspunde cu DA/NU

Accounting

- Implementare folosind un server de AAA
- Menţine evidenţa activităţilor individuale
- După autentificarea utilizatorului toate activitățile acestuia in rețea sunt salvate
- Foarte important pentru securitatea reţelei, dar şi pentru rapoarte despre activitatea utilizatorilor

Cisco Discovery Protocol

- protocol de nivel 2 proprietar Cisco
- folosit între două echipamente vecine pentru a anunţa informaţii referitoare la:
 - platformă
 - sistemul de operare
 - adresa IP
 - interfeţele direct conectate

R8# show cdp nei Capability Codes	ghbors : R - Router, T - S - Switch, H -	Trans Bridg Host, I - I	e, B - Source GMP, r - Rep	e Route Br. eater	idge
Device ID	Local Intrfce	Holdtme	Capability	Platform	Port ID
S1	Fas 0/0	163	S I	WS-C2960-	Fas 0/4
R7	Ser 0/2/1	131	R S I	2801	Ser 0/2/1

NBAR

- Network Based Application Recognition
 - Recunoaşte un număr mare de protocoale şi poate fi extins prin folosirea de module (PDLM – Packet Description Language Modules)
- NBAR protocol-discovery permite recunoaşterea protocoalelor pentru o anumită interfaţă

Folosirea lui poate duce la o utilizare excesivă a procesorului şi a memoriei ruterului

NBAR

configurarea pe interfaţă

Aegis#config t

Aegis(config)#interface FastEthernet0/0 Aegis(config-if)#ip nbar protocol-discovery

verificarea protocoalelor ce rulează

FastEthernet0/ Protocol	0 Input Packet Count Byte Count	Output Packet C Byte Cou	count int
	5min Bit Rat 5min Max Bit Rate	e (bps) e (bps) 5min	5min Bit Rate (bps) 1 Max Bit Rate (bps)
 ftp	617		606
	792480		34749
	34000		1000
	34000		1000
ospf	78		78
	7356		7376
	0		0
	0		0
Total	3898		4113
304	5939	488008	
	59000	10	00
	78000	16000	

- Simple Network Management Protocol
- Protocol de Nivel Aplicație folosit pentru schimbarea de informații într-o rețea
- Componentele unei reţele ce foloseşte SNMP
 - Dispozitivul de monitorizat
 - Un software denumit agent instalat pe acest dispozitiv
 - O aplicaţie de monitorizare ce primeşte informaţii de la aceste dispozitive
- Prin SNMP se pot primi informaţii de la echipamente, existând şi posibilitatea de trimitere de comenzi

NMIS

- Network Management Information System
- Oferă informații despre disponibilitatea și încărcarea echipamentelor din rețea
- Foloseşte SNMP pentru colectarea datelor

Netflow

 Protocol implementat de Cisco pentru colectarea informaţiilor despre trafic

Arhitectura se bazează pe colectarea datelor de către un sistem separat, folosirea ruterului poate duce la suprasolicitarea acestuia

Foloseşte mesaje sumarizate pentru transmiterea de informaţii referitoare la un anumit tip de trafic

IPFIX este dezvoltat de IETF pentru îmbunătăţirea şi standardizarea protocolului

Universitatea Politehnica București - Proiectarea Rețelelor

Ntop

Este o unealtă de monitorizare a traficului prin protocolul Netflow/IPFIX

- Poate identifica
 - tipurile de trafic
 - dispozitivele
 - Iăţimea de bandă

Θ	Θ					Welc	ome to ntop!			
nt	op)								
About	Sur	mmary IP Me	edia Admin l	Jtils						
		Traffic								
		Hosts								
		Network Load				Host l	nformatio	า		
Traffic U		ASN Info	1							
]	VLAN Info		Domain	IP Address	MAC Address	Other Name(s)	Bandwidth	Nw Board Vendor	Hops Dis
host254		Network Flows		\odot	83.149.145.254					
host078	3-144		1	\odot	83.149.144.78					
host005	5-160			0	83.149.160.5			=		
host019	9-154	—		ं	83.149.154.19					
host017	7-148	—		ं	83.149.148.17			=		
host081	1-144	P		ं	83.149.144.81			=		
host016	5-148	—		\odot	83.149.148.16			=		
host067	7-144	—		\odot	83.149.144.67			•		
host153	8-147	-		\bigcirc	83.149.147.153			1		
host095	5-144	—		\odot	83.149.144.95					
host019	9-146	—		ं	83.149.146.19			•		
host014	1-148			ं	83.149.148.14			•		
freebsd	l.com	puterhouseprat	o.com 🖂 🔘 🏲		83.149.154.10			:		
freebsd	l.giov	annelli.com 🖂		\odot	83.149.149.149			:		
host012	2-144			\odot	83.149.144.12			•		
host023	8-146	-		ं	83.149.146.23					

Smokeping

- Folosit pentru monitorizarea latenţei în reţea
- Trimite pachete de ping către stațiile configurate, implicit
 20 de pachete la fiecare 300 de secunde
- Pe baza răspunsurilor primite poate genera grafice cu disponibilitatea echipamentelor sau a reţelei

IP SLA

- IP Service Level Agreement
- Folosit pentru monitorizarea resurselor
- Bazat pe crearea diverselor tipuri de pachete
 - TCP Connect
 - Folosit pentru simularea unui client, determinarea timpului de răspuns
 - FTP
 - ICMP Echo
 - HTTP
 - Poate seta și câmpul ToS din antetul IP

IP SLA

Sumar

Universitatea Politehnica București - Proiectarea Rețelelor

16

Test practic – Rezolvări

Proiectarea Rețelelor

Adresare IP

 Configurați adresele IP ale interfețelor de loopback conform tabelul de mai jos.

R1	Lo0	11.10.1.1 /24
R2	Lo0	12.14.14.1 /24
R3	Lo0	13.13.13.1 /24
R4	Lo0	14.14.14.1 /24
R5	Lo0	15.12.13.1 /26
	Lo1	15.12.13.65 /26

10 puncte

Adresare IP

YES manual up

YES manual up

11.10.2.1

Loopback1

Universitatea Politehnica București - Proiectarea Rețelelor

up

up

a. Configurați OSPF aria 0 pe segmentul Ethernet dintre R2 și R5.

b. Configurați OSPF aria 1 pe segmentul Serial dintre R1 și R2 și pe interfața de loopback Io0 a lui R2.

- c. Configurați OSPF aria 2 pe interfața lo0 a lui R1.
- d. Configure rețeaua OSPF astfel încât să aveți ping între R5 și interfața lo0 a lui R1
- e. Configurați rețeaua OSPF astfel încât R2 să fie mereu ales DR pe legătura dintre R2 și R5.

f. Introduceți în OSPF, ca rute externe cu cost cumulativ, DOAR interfețele lo0 și lo1 ale lui R5.

- g. Introduceți în OSPF rețeaua lo2 a lui R2 ca rută internă în aria 0.
- h. Sumarizați rețele de pe lo0 și lo1 ale lui R5.
- i. Configurați aria 2 astfel încât această să nu accepte LSA-uri de tip 5. Verificați acest lucru.

35 puncte

OSPF - a

OSPF - b

R1#sh ip route ospf

Ο

89.0.0/24 is subnetted, 3 subnets

12.0.0/32 is subnetted, 1 subnets

O IA 89.112.25.0 [110/74] via 89.112.12.2, 00:00:06, Serial1/0

12.14.14.1 [110/65] via 89.112.12.2, 00:00:06, Serial1/0

OSPF - c

R1(config)#int R1(config-if)#i R1#sh ip ospf d	l0 p ospf 1 area 2 atabase					
OSP	F Router with ID	(11.10.2.1)	(Process I	D 1)		
	Router Link Sta	tes (Area 1)				
Link ID 11.10.2.1 12.14.14.1	ADV Router 11.10.2.1 12.14.14.1	Age 455 448	Seq# 0x80000002 0x80000002	Checksum 0x00CFCD 0x00341C	Link 2 3	count
	Summary Net Lin	k States (Ar	ea 1)			
Link ID 89.112.25.0	ADV Router 12.14.14.1	Age 456	Seq# 0x80000001	Checksum 0x00C561		
	Router Link Sta	tes (Area 2)				
Link ID 11.10.2.1	ADV Router 11.10.2.1	Age 8	Seq# 0x80000001	Checksum 0x00BB2F	Link 1	count

Universitatea Politehnica București - Proiectarea Rețelelor

OSPF - d

Universitatea Politehnica București - Proiectarea Rețelelor

24

OSPF - e

R5#sh ip ospf	nei				
Neighbor ID	Pri	State	Dead Time	Address	Interface
12.14.14.1	100	FULL/DR	00:00:35	89.112.25.2	Ethernet0/1

OSPF - f

R1#sh ip route ospf
[]
15.0.0/26 is subnetted, 2 subnets
O E1 15.12.13.0 [110/94] via 89.112.12.2, 00:00:01, Serial1/0
O E1 15.12.13.64 [110/94] via 89.112.12.2, 00:00:01, Serial1/0

OSPF - h

O E1 15.12.13.0/25 [110/94] via 89.112.12.2, 00:00:04, Serial1/0

OSPF - i


```
R1(config) #router ospf 1
R1(config-router) #area 2 stub
R1#sh ip ospf
[...]
    Area 2
        Number of interfaces in this area is 1 (1 loopback)
        It is a stub area
          generates stub default route with cost 1
        Area has no authentication
        SPF algorithm last executed 00:02:23.996 ago
        SPF algorithm executed 7 times
        Area ranges are
        Number of LSA 6. Checksum Sum 0x03ADC9
        Number of opaque link LSA 0. Checksum Sum 0x000000
        Number of DCbitless LSA 0
        Number of indication LSA 0
        Number of DoNotAge LSA 0
        Flood list length 0
```


 a. Configurați adresa 2001:1::1/64 pe interfața lo1 a lui R1.

b. Configurați adresa 2001:2::/64 pe interfața lo2 a lui R5. Ultimii 64 de biți ai adresei trebuie generați folosind metoda EUI-64.

Configurați un tunel MCT între R1 și R5 astfel încât să existe conectivitate între lo1 a lui R1 și lo2 a lui R5. Pentru acest task este permisă folosirea rutelor statice.

IPv6 – a,b

Pe R2, filtrați rețeaua 15.12.13.0/25 astfel încât aceasta să nu fie instalată în tabela de rutare. R1 trebuie să aibă în continuare această rețea în tabela sa de rutare.

Hint: este posibil să trebuiască să restartați procesul OSPF pentru a vedea diferențele în tabela de rutare.

Route filtering


```
R2(config) #router ospf 1
R2(config-router)#distribute-list OSPF IN in
R2 (config-router) #exit
R2(config) #ip access-list standard OSPF IN
R2(config-std-nacl)#deny 15.12.13.0 0.0.0.127
R2(config-std-nacl) #permit any
R2(config-std-nacl)#do sh ip access-list
Standard IP access list OSPF IN
    10 deny 15.12.13.0, wildcard bits 0.0.0.127 (2 matches)
    20 permit any (3 matches)
R2(config-std-nacl)#do sh ip route
[...]
     11.0.0.0/32 is subnetted, 1 subnets
        11.10.1.1 [110/65] via 89.112.12.1, 00:00:05, Serial1/0
ο τα
     89.0.0/24 is subnetted, 3 subnets
        89.112.12.0 is directly connected, Serial1/0
С
С
        89.112.25.0 is directly connected, Ethernet0/1
С
        89.112.23.0 is directly connected, Ethernet0/0
     12.0.0/24 is subnetted, 1 subnets
С
        12.14.14.0 is directly connected, Loopback0
     15.0.0/32 is subnetted, 1 subnets
        15.15.15.1 [110/11] via 89.112.25.5, 00:00:05, Ethernet0/1
Ο
```


- a. Configurați următoarele adiacențe iBGP în AS-ul 100:
 - i. R2-R5 adiacența trebuie realizată peste interfețele de loopback
 - ii. R1-R2 adiacența trebuie realizată peste interfețele de loopback
 - iii. R3-R4 adiacența nu trebuie realizată peste interfețele de loopback
- b. Configurați eBGP între R4-R5. Adiacența trebuie realizată direct peste interfețele fizice, fără a folosi interfețe de loopback.
- c. Configurați eBGP între R2 și R3 folosind interfețele de loopback pentru stabilirea adiacenței. Folosirea rutelor statice este permisă pentru acest task.
- d. Introduceți rețeaua lo1 a lui R4 în BGP cu codul de origine "?"
- e. Configurați rețeaua astfel încât R1 să poată da ping din interfața sa de loopback lo0 în interfața lo1 a lui R4. Nu este permisă folosirea rutelor statice.

PR BGP – a network crunch lo0 R2#sh runn | sec bqp 89.112.23.0/24 router bqp 100 no synchronization E0/0 EO/Obgp log-neighbor-changes E0/1 1/0 neighbor 15.15.15.1 remote-as 100 neighbor 15.15.15.1 update-source Loopback0 no auto-summary 68 Q.). R5#sh runn | sec bqp router bgp 100 no synchronization bgp log-neighbor-changes neighbor 12.14.14.1 remote-as 100 neighbor 12.14.14.1 update-source Loopback2 no auto-summary E0/1 E0/0 S1/0 R5 R5#sh ip bqp summ BGP router identifier 15.15.15.1, local AS number 100 BGP table version is 1, main routing table version 1 Neighbor V AS MsqRcvd MsqSent TblVer InQ OutQ Up/Down State/PfxRcd 12.14.14.1 4 100 3 3 1 0 0 00:00:54 0

BGP state = Established, up for 00:03:39

R4#sh ip bgp	
R4#	

 R2 (config) #ip route 13.13.13.0 255.255.255.0 89.112.23.3

 R2 (config) #router bgp 100

 R2 (config-router) #neighbor 13.13.13.1 remote-as 200

 R2 (config-router) #neighbor 13.13.13.1 update-source 10

 R2 (config-router) #neighbor 13.13.13.1 update-source 10

 R2 (config-router) #neighbor 13.13.13.1 ebgp-multihop 2

 R3 (config) #ip route 12.14.14.0 255.255.255.0 89.112.23.2

 R3 (config) #ip route 12.14.14.1 remote-as 100

 R3 (config-router) #neighbor 12.14.14.1 remote-as 100

 R3 (config-router) #neighbor 12.14.14.1 update-source 10

 R3 (config-router) #neighbor 12.14.14.1 update-source 10

 R3 (config-router) #neighbor 12.14.14.1 update-source 10

 R3 (config-router) #neighbor 12.14.14.1 update-source 10

BGP – d

Sumar

