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Membership Inference Attacks
(MIAs)
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Course schedule

1. Why?
2. Cauzalitate
3. Măsurare
4. Modelare și eșantionare
5. Tehnici de analiză

• Analiza factorială
• Analiza cluster
• Analiza de regresie
• Analiza de rețea
• Serii de timp

6.   Predicție
7.  Programare și ML

8.  Why Privacy?
9.   Privacy Enhancing Techniques
10. Homomorphic Encryption. PIR
11.  Differential Privacy
12.  Membership Inference Attacks
13.  Federated Architecture. Multi-
party computation
14. Explainable AI
15.  Zero knowledge proof. 
Blockchain architecture
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Context
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Era of ML models
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What are 
Membership

Inference Attacks
(MIAs)?
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Membership Inference Attacks (MIAs)

• Was a data record used in the training phase of a ML model or not?

Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.
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Why is relevant 
to protect

against MIAs?
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In the context of privacy

• Infering that a record was part of the training data
-> An attacker can predict accurately based on that record

• In conformity with NIST an MIA is a confidentiality violation

• Companies that offers MLaaS can violate privacy regulations if MIAs 
can be executed
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MLaaS

https://labelyourdata.com/articles/machine-learning-as-a-service-mlaas
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Types of 
MIAs settings
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Based on adversarial knowledge

• Two kinds of knowledge relevant for an attacker:
• Knowledge of training data

• Knowledge of target model

• Starting from the amount of information an attacker knows about the 
target model:
• White-box Attack

• Black-box Attack

14



Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.
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MIAs
approaches
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Approaches

• Are based upon the different behavior of a ML model on training data 
vs test data

• Metric Based MIAs

• Binary Classifier Based MIAs
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Metric Based MIAs

• Compare calculated metrics with preset thresholds

• Four major types:
• Prediction Correctness Based MIA

• Prediction Loss Based MIA

• Prediction Confidence Based MIA

• Prediction Entropy Based MIA
• Modified Prediction Entropy Based MIA
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Prediction Correctness Based MIA

Hypothesis:
"An attacker infers an input record x as a 

member if it is correctly predicted by the target 
model, otherwise the attacker infers it as a non-

member" [1]

Intuition:
ML models not generalize well
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Prediction Loss Based MIA

Hypothesis:
"An attacker infers an input record as a member 
if its prediction loss is smaller than the average 

loss of all training members, otherwise the 
attacker infers it as a non-member" [1]

Intuition:
ML model is trained to minimize the prediction 

loss of training data
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Prediction Loss

https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss#:~:text=That%20is%2C%20loss%20is%20a,on%20average%2C%20across%20all%20examples.
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Prediction Confidence Based MIA

Hypothesis:
"An attacker infers an input record as a member 
if its maximum prediction confidence is larger 

than a preset threshold, otherwise the attacker 
infers it as a non-member" [1]

Intuition:
ML model is trained to minimize prediction loss 

for training data -> confidence score of a training 
member's prediction is close to 1
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Prediction Entropy Based MIA

Hypothesis:
"An attacker infers an input record as a member 
if its prediction entropy is smaller than a preset 
threshold, otherwise the attacker infers it as a 

non-member" [1]

Intuition:
The prediction entropy of training data is smaller 

than the prediction entropy of test data
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Entropy

• Expected value of surprise

• Measure of uncertainty of a variable

• The more uncertain, the higher the entropy

https://www.javatpoint.com/entropy-in-machine-learning
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Why Modified Prediction Entropy Based MIA?

• A totally wrong classification with confidence score of 1 -> zero 
entropy -> member of training data

• Totally wrong classification -> highly likely a non-member

• We should take into account the ground truth label
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Binary Classifier Based MIAs

• Needs to train an auxiliary ML model

• Shadow training proposed by Shokri et al. [2]
• Multiple shadow models to mimic the target model

• Shadow training datasets and test datasets disjoint from the target model's 
datasets

• Used both in White-box Attacks and Black-box Attacks
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Shadow Training Technique

Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.
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White-box Setting vs Black-box Setting

Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.
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MIAs on ML 
models
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Current types of ML models attacked

• MIAs on classification models
• Main focus of research

• MIAs on generative models
• GANs are the main target

• MIAs on embedding models
• Both White-box and Black-box attacks

• MIAs on regression models
• Only in White-box setting

• MIAs against Federated Learning
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GANs (Generative Adversarial Networks)

https://www.simplilearn.com/tutorials/deep-learning-tutorial/generative-adversarial-networks-
gans#:~:text=GANs%20perform%20unsupervised%20learning%20tasks,the%20variations%20within%20a%20dataset.
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Embedding Models

https://medium.com/@ryanntk/choosing-the-right-embedding-model-a-guide-for-llm-applications-7a60180d28e3
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Federated Learning – Short Intro

https://www.semanticscholar.org/paper/Architectural-Patterns-for-the-Design-of-Federated-Lo-
Lu/60c4e1ff361c6c64b526edf3b281c78d941dbf1f
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Why MIAs work?
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Why MIAs work (1)

• Overfitting of Target Models

https://www.simplilearn.com/tutorials/machine-learning-tutorial/overfitting-and-underfitting
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Why MIAs work (2)
Types of Target Models

https://www.datacamp.com/tutorial/decision-tree-classification-python https://mlarchive.com/machine-learning/the-ultimate-guide-to-naive-bayes/
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Why MIAs work (3)

• Diversity of Training Data
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Defense
against
MIAs
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Techniques of Defense

• Confidence Score Masking

• Regularization

• Knowledge Distillation

• Differential Privacy

39



Confidence Score Masking

• Used to mitigate MIAs on classification models

• Aims to hide the true confidence scores returned by the target model

• Two methods:
• Top-K confidence scores

• Often reduced to top three most likely classes for a record

• Prediction label only
• The attacker gets only the predicted label (class) for a record
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MemGuard [3]

• Some crafted noise is added to the prediction vector

• The accuracy of the ML model is not impacted

• Still susceptible to metric based MIAs
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Regularization (1)

• Aims to reduce the overfitting of the ML model
• The ML model can generalize better -> Decreased generalization gap

• Classical regularization techniques:
• L2-norm regularization

• Dropout

• Early stopping
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Regularization (2)

• Special regularization techniques to mitigate MIAs:
• Adversarial Regularization [4]

• Target Model is trained in a manner to preserve its prediction accuracy while reducing 
the attacker's performance
• New regularization term -> Membership Inference gain of the attack model

• Mixup + MMD [5]
• Forces the ML classifier to generate similar output distribution for training data and test 

data

• New regularization term -> Maximum Mean Discrepancy – distance between the output 
distributions of members and non-members
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Regularization (3)

• Advantage:
• Defense against MIA whether an attacker is in White-box or Black-box setting

• Drawback:
• Privacy-Utility Tradeoff
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Knowledge Distillation

https://neptune.ai/blog/knowledge-distillation
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Distillation for Membership Privacy (DMP) [6]
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Differential Privacy

• Advantages:
• The ML model does not remember characteristics of its training data

• Mitigates more types of attacks, not only MIAs
• Attribute Inference Attacks

• Property Inference Attacks

• Drawbacks:
• Privacy-Utility Tradeoff

• Instead of using DP-SGD, a possible approach is DP-Logits [7]
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Conclusions
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Instead of conclusions (1)

• Research opportunities
• Membership Inference Attacks:

• On non-overfitted ML models

• On transformers as Bert, T5

• On heterogenous FL

• In relation with Adversarial ML

49



Instead of conclusions (2)

• Membership Inference Defense:
• Can obtain protection against MIAs only by offering Black-box access to attackers

to a ML model trained in DP fashion (adding noise only to the model's output)?

• FL combined with DP with a good Privacy-Utility tradeoff

• Techniques to mitigate MIAs on Embedding Models
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