

Curs 12 Membership Inference Attacks (MIAs)

1/27/2024

Course schedule

- 1. Why?
- 2. Cauzalitate
- 3. Măsurare
- 4. Modelare și eșantionare
- 5. Tehnici de analiză
 - Analiza factorială
 - Analiza cluster
 - Analiza de regresie
 - Analiza de rețea
 - Serii de timp
- 6. Predicție
- 7. Programare și ML

- 8. Why Privacy?
- 9. Privacy Enhancing Techniques
- 10. Homomorphic Encryption. PIR
- 11. Differential Privacy
- 12. Membership Inference Attacks
- 13. Federated Architecture. Multiparty computation
- 14. Explainable Al
- 15. Zero knowledge proof. Blockchain architecture

Contents

- 1. Context
- 2. What are Membership Inference Attacks?
- 3. Why is relevant to protect against Membership Inference Attacks?
- 4. Types of MIAs settings
- 5. MIAs approaches

Contents

- 6. MIAs on ML models
- 7. Why MIAs work?
- 8. Defense against MIAs
- 9. Conclusions

Context

Era of ML models

What are Membership Inference Attacks (MIAs)?

Membership Inference Attacks (MIAs)

• Was a data record used in the training phase of a ML model or not?

Fig. 1. A typical deep learning process for classification models.

Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.

Why is relevant to protect against MIAs?

In the context of privacy

- Infering that a record was part of the training data
 -> An attacker can predict accurately based on that record
- In conformity with NIST an MIA is a confidentiality violation
- Companies that offers MLaaS can violate privacy regulations if MIAs can be executed

MLaaS

https://labelyourdata.com/articles/machine-learning-as-a-service-mlaas

Types of MIAs settings

Based on adversarial knowledge

- Two kinds of knowledge relevant for an attacker:
 - Knowledge of training data
 - Knowledge of target model
- Starting from the amount of information an attacker knows about the target model:
 - White-box Attack
 - Black-box Attack

Fig. 2. Overview of white-box membership inference attacks.

Fig. 3. Overview of black-box membership inference attacks.

Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.

MIAs approaches

Approaches

- Are based upon the different behavior of a ML model on training data vs test data
- Metric Based MIAs
- Binary Classifier Based MIAs

Metric Based MIAs

- Compare calculated metrics with preset thresholds
- Four major types:
 - Prediction Correctness Based MIA
 - Prediction Loss Based MIA
 - Prediction Confidence Based MIA
 - Prediction Entropy Based MIA
 - Modified Prediction Entropy Based MIA

Prediction Correctness Based MIA

Hypothesis:

"An attacker infers an input record x as a member if it is correctly predicted by the target model, otherwise the attacker infers it as a nonmember" [1]

Intuition:

ML models not generalize well

Prediction Loss Based MIA

Hypothesis:

"An attacker infers an input record as a member if its prediction loss is smaller than the average loss of all training members, otherwise the attacker infers it as a non-member" [1]

Intuition:

ML model is trained to minimize the prediction loss of training data

Prediction Loss

https://developers.google.com/machine-learning/crash-course/descending-into-ml/training-and-loss#:~:text=That%20is%2C%20loss%20is%20a,on%20average%2C%20across%20all%20examples.

Prediction Confidence Based MIA

Hypothesis:

"An attacker infers an input record as a member if its maximum prediction confidence is larger than a preset threshold, otherwise the attacker infers it as a non-member" [1]

Intuition:

ML model is trained to minimize prediction loss for training data -> confidence score of a training member's prediction is close to 1

Prediction Entropy Based MIA

Hypothesis:

"An attacker infers an input record as a member if its prediction entropy is smaller than a preset threshold, otherwise the attacker infers it as a non-member" [1]

The prediction entropy of training data is smaller than the prediction entropy of test data

Entropy

• Expected value of surprise

Low Entropy

High Entropy

- Measure of uncertainty of a variable
- The more uncertain, the higher the entropy

Why Modified Prediction Entropy Based MIA?

- A totally wrong classification with confidence score of 1 -> zero entropy -> member of training data
- Totally wrong classification -> highly likely a non-member
- We should take into account the ground truth label

Binary Classifier Based MIAs

- Needs to train an auxiliary ML model
- Shadow training proposed by Shokri et al. [2]
 - Multiple shadow models to mimic the target model
 - Shadow training datasets and test datasets disjoint from the target model's datasets
 - Used both in White-box Attacks and Black-box Attacks

Shadow Training Technique

Fig. 4. Overview of the shadow training technique.

Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.

White-box Setting vs Black-box Setting

(a) Binary classifier based black-box MIAs.

(b) Binary classifier based white-box MIAs.

Fig. 5. Overview of binary classifier-based attack models in black-box and white-box settings. In the membership inference phase, the black-box attack model only takes the prediction vector $\hat{p}(y \mid x)$ as input and outputs the membership status of the data record. However, the white-box attack model can take the flat vector \boldsymbol{v} containing much more information of the data record as input and outputs its membership status.

Source: Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. ACM Computing Surveys (CSUR), 54(11s), 1-37.

MIAs on ML models

Current types of ML models attacked

- MIAs on classification models
 - Main focus of research
- MIAs on generative models
 - GANs are the main target
- MIAs on embedding models
 - Both White-box and Black-box attacks
- MIAs on regression models
 - Only in White-box setting
- MIAs against Federated Learning

GANs (Generative Adversarial Networks)

https://www.simplilearn.com/tutorials/deep-learning-tutorial/generative-adversarial-networksgans#:~:text=GANs%20perform%20unsupervised%20learning%20tasks,the%20variations%20within%20a%20dataset.

Embedding Models

https://medium.com/@ryanntk/choosing-the-right-embedding-model-a-guide-for-llm-applications-7a60180d28e3

Federated Learning – Short Intro

https://www.semanticscholar.org/paper/Architectural-Patterns-for-the-Design-of-Federated-Lo-Lu/60c4e1ff361c6c64b526edf3b281c78d941dbf1f

Why MIAs work?

Why MIAs work (1)

• Overfitting of Target Models

Why MIAs work (2)

Types of Target Models

Why MIAs work (3)

• Diversity of Training Data

Defense against MIAs

Techniques of Defense

- Confidence Score Masking
- Regularization
- Knowledge Distillation
- Differential Privacy

Confidence Score Masking

- Used to mitigate MIAs on classification models
- Aims to hide the true confidence scores returned by the target model
- Two methods:
 - Top-K confidence scores
 - Often reduced to top three most likely classes for a record
 - Prediction label only
 - The attacker gets only the predicted label (class) for a record

MemGuard [3]

- Some crafted noise is added to the prediction vector
- The accuracy of the ML model is not impacted
- Still susceptible to metric based MIAs

Regularization (1)

- Aims to reduce the overfitting of the ML model
 - The ML model can generalize better -> Decreased generalization gap
- Classical regularization techniques:
 - L2-norm regularization
 - Dropout
 - Early stopping

Regularization (2)

- Special regularization techniques to mitigate MIAs:
 - Adversarial Regularization [4]
 - Target Model is trained in a manner to preserve its prediction accuracy while reducing the attacker's performance
 - New regularization term -> Membership Inference gain of the attack model
 - Mixup + MMD [5]
 - Forces the ML classifier to generate similar output distribution for training data and test data
 - New regularization term -> Maximum Mean Discrepancy distance between the output distributions of members and non-members

Regularization (3)

- Advantage:
 - Defense against MIA whether an attacker is in White-box or Black-box setting
- Drawback:
 - Privacy-Utility Tradeoff

Knowledge Distillation

Distillation for Membership Privacy (DMP) [6]

Figure 1: Distillation for Membership Privacy (DMP) defense. (1) In pre-distillation phase, DMP trains an unprotected model θ_{up} on the private training data without any privacy protection. (2.1) In distillation phase, DMP uses θ_{up} to select/generate appropriate reference data X_{ref} that minimizes membership privacy leakage. (2.2) Then, DMP transfers the knowledge of θ_{up} by computing predictions of θ_{up} on X_{ref} , denoted by $\theta_{up}^{X_{ref}}$. (3) In post-distillation phase, DMP trains the final protected model θ_p on $(X_{ref}, \theta_{up}^{X_{ref}})$.

Differential Privacy

- Advantages:
 - The ML model does not remember characteristics of its training data
 - Mitigates more types of attacks, not only MIAs
 - Attribute Inference Attacks
 - Property Inference Attacks
- Drawbacks:
 - Privacy-Utility Tradeoff
- Instead of using DP-SGD, a possible approach is DP-Logits [7]

Conclusions

Instead of conclusions (1)

- Research opportunities
 - Membership Inference Attacks:
 - On non-overfitted ML models
 - On transformers as Bert, T5
 - On heterogenous FL
 - In relation with Adversarial ML

Instead of conclusions (2)

- Membership Inference Defense:
 - Can obtain protection against MIAs only by offering Black-box access to attackers to a ML model trained in DP fashion (adding noise only to the model's output)?
 - FL combined with DP with a good Privacy-Utility tradeoff
 - Techniques to mitigate MIAs on Embedding Models

References

[1] Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P. S., & Zhang, X. (2022). Membership inference attacks on machine learning: A survey. *ACM Computing Surveys (CSUR)*, *54*(11s), 1-37.

[2] Shokri, R., Stronati, M., Song, C., & Shmatikov, V. (2017, May). Membership inference attacks against machine learning models. In 2017 IEEE symposium on security and privacy (SP) (pp. 3-18). IEEE.

[3] Jia, J., Salem, A., Backes, M., Zhang, Y., & Gong, N. Z. (2019, November). Memguard: Defending against black-box membership inference attacks via adversarial examples. In Proceedings of the 2019 ACM SIGSAC conference on computer and communications security (pp. 259-274).

[4] Nasr, M., Shokri, R., & Houmansadr, A. (2018, October). Machine learning with membership privacy using adversarial regularization. In Proceedings of the 2018 ACM SIGSAC conference on computer and communications security (pp. 634-646).

References (2)

[5] Li, J., Li, N., & Ribeiro, B. (2021, April). Membership inference attacks and defenses in classification models. In Proceedings of the Eleventh ACM Conference on Data and Application Security and Privacy (pp. 5-16).

[6] Shejwalkar, V., & Houmansadr, A. (2021, May). Membership privacy for machine learning models through knowledge transfer. In Proceedings of the AAAI conference on artificial intelligence (Vol. 35, No. 11, pp. 9549-9557).

[7] Rahimian, S., Orekondy, T., & Fritz, M. (2020). Sampling attacks: Amplification of membership inference attacks by repeated queries. arXiv preprint arXiv:2009.00395.