

Curs 11 Differential Privacy (DP)

1/27/2024

Course schedule

- 1. Why?
- 2. Cauzalitate
- 3. Măsurare
- 4. Modelare și eșantionare
- 5. Tehnici de analiză
 - Analiza factorială
 - Analiza cluster
 - Analiza de regresie
 - Analiza de rețea
 - Serii de timp
- 6. Predicție
- 7. Programare și ML

- 8. Why Privacy?
- 9. Privacy Enhancing Techniques
- 10. Homomorphic Encryption. PIR
- 11. Differential Privacy
- 12. Membership Inference Attacks
- 13. Federated Architecture. Multiparty computation
- 14. Explainable Al
- 15. Zero knowledge proof. Blockchain architecture

Contents

- 1. Context
- 2. What is Differential Privacy?
- 3. How does DP work?
- 4. DP Mechanisms
- 5. Types of DP

Contents

- 6. Privacy Preserving Machine Learning
- 7. Privacy budget
- 8. Implementations of DP in real world
- 9. Limitations of DP
- 10. Conclusions

Context

- Companies have to respect GDPR / CCPA / LGDP and also analyze data
- Data needs protection against attackers and security breaches
- Sometimes data has to be publicly shared between businesses for collaboration
- How can these be done?
 - Differential Privacy

<u>https://www.nist.gov/video/what-differential-privacy</u>

What is Differential Privacy?

Differential Privacy (DP)

- Mathematical framework to ensure the privacy of individuals' data
- Goal:
 - To assure an individual that his data remain confidential even if it is used in a statistical study
- Offers privacy guarantees regardless of what an adversary knows
- It is future-proof
- Used on statistical analysis tasks and lately in ML models

Differential Privacy (DP) (2)

- Offers protection against privacy attacks such as:
 - Background Knowledge Attack
 - Reidentification Attack
 - Membership Inference Attack
- Based upon the idea that the risk of a person' data to be exposed increases every time its data is processed
- Used by big tech companies like Google, Uber, Apple to publicly release studies about sensitive datasets

Source: <u>https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our</u>

Formal Definition of DP

Source: <u>https://www.nist.gov/blogs/cybersecurity-insights/differential-privacy-privacy-preserving-data-analysis-introduction-our</u>

What is this M?

- Any computation that can be done on data
- In DP systems M is a randomized mechanism:
 - The output of M changes probabilistically based upon its input data

How does DP work?

How does DP work?

- Addition of calibrated noise to the output of a statistical query:
 - Done to mask the contribution of an individual data to the final output
 - Chosen in order to preserve a similar accuracy for the analysis
- Multiple mechanisms to add noise

DP mechanisms

DP mechanisms

- Two main types of techniques used in DP systems to add noise:
 - Laplace mechanism
 - Randomized response and perturbations

Primordial example of DP mechanism

- To protect the privacy of individuals' data
 - Ask each individual a "yes" or "no" question
 - Based upon their response flip a coin
 - If it is head \rightarrow Add the true answer to the database
 - If it is tails \rightarrow Flip again the coin
 - If it is head \rightarrow Add "yes" as the answer to the database
 - If it is tails \rightarrow Add "no" as the answer to the database

Primordial example of DP mechanism (2)

Source: https://www.r-bloggers.com/2020/07/local-differential-privacy-getting-honest-answers-on-embarrassing-questions/

The Laplace mechanism

- Noise is added to the output of a function
- The noise added depends upon the sensitivity of the function
- A function with more sensitivity \rightarrow More noise to add

The Laplace mechanism (2)

Source: <u>https://www.statice.ai/post/what-is-differential-privacy-definition-mechanisms-examples</u>

The Laplace Mechanism – formal definition

Let $f[\bullet]$ be a deterministic function of a database \mathcal{D} which returns a scalar value. For instance, it might count the number of entries that satisfy a condition. The Laplace mechanism works by adding noise to $f[\bullet]$:

$$M[\mathcal{D}] = f[\mathcal{D}] + \xi,$$
 (3)

where $\xi \sim Lap_{\xi}[b]$ is a sample from a Laplace distribution (figure 2) with scale b. The Laplace mechanism is ϵ -differentially private with $\epsilon = \Delta f/b$. The term Δf is a constant called the sensitivity which depends on the function $f[\bullet]$.

Source: <u>https://www.borealisai.com/research-blogs/tutorial-12-differential-privacy-i-introduction/</u>

Laplace Distribution

Source: https://www.borealisai.com/research-blogs/tutorial-12-differential-privacy-i-introduction/

Function sensitivity - Δf

• Describes how much the output of the function can change with the addition or removal of a single element

Examples of function sensitivity

Examples of function sensitivity (2)

∆f = 1

Examples of function sensitivity (3)

Randomized response and perturbations

- Ask individuals to answer to a "yes" or "no" question in a randomized manner
- ½ probability to give a truthful answer and ½ probability to give a random response
- Introduce plausible deniability: the mechanism forced respondents to lie
- Ensures that the individuals' answers can be claimed to be the product of chance rather than their true response

Randomized response and perturbations (2)

- Limitations:
 - Can introduce bias when the probability of a truthful answer is too low
- Solution:
 - Ask multiple questions to better understand the statistical population

Types of DP

Types of DP

- Depending upon where the noise is added there are two types:
 - Local Differential Privacy
 - Global Differential Privacy

Types of DP (2)

Source: https://quantalabs.github.io/Differential-Privacy/

Privacy Preserving Machine Learning

Privacy Preserving Machine Learning with DP

- Two main solutions proposed to achieve privacy in ML models using:
 - **DP-SGD** → Differential Private Stochastic Gradient Descent
 - DPL \rightarrow Differential Private Logits

DP-SGD

- Noise is added to the gradients during model training
- Uses Gaussian or Laplacian noise
- Needs to clip the gradients when updating the model parameters
 - Done to control the sensitivity of the gradients
- The magnitude of the added noise is proportional to the number of steps of training
- Implementations in Tensorflow Privacy and PyTorch Opacus

DP-SGD (2)

Source: https://www.nist.gov/blogs/cybersecurity-insights/how-deploy-machine-learning-differential-privacy

DP-SGD (3)

- Limitations:
 - It slows-down the training process
 - Addition of the noise during training can hurt the model accuracy

DP-Logits

- Approach that perturbs only the model outputs
- Can be applied directly on a trained ML model
- Noise is added at the prediction time, not in the training phase

Logits

Unnormalised predictions (or outputs) of a model

Privacy budget

Disadvantage of DP without constraints

- At each query on the data privacy loss occurs
- Different queries → different results because of the randomness mechanism
- Because of that the level of anonymity of the data decreases (an attacker can filter out the noise)
- Solution: Introduction of the privacy budget

What is privacy budget?

- An upper limit established by a data curator
- Indicates the value of eps from where the data loses its anonymity
- Curators blocks the queries if the cost of the queries done on data is greater than the privacy budget
- 2017: Apple used a privacy budget of 14 per day

Implementations of DP in real world

US Census Bureau

Data Protection Process

Source: https://www.statice.ai/post/what-is-differential-privacy-definition-mechanisms-examples

Google RAPPOR

- Used to collect security metrics
- Local Differential Privacy
- Allows the analysis of the forest of the client data without the possibility to look at individual trees

Apple

- Used to improve user experience starting from what users do
- Local Differential Privacy
- Privacy budget per-donation \rightarrow Limit for user' contributions
- Emoji suggestions, QuickType suggestions, Health Type Usage

Apple (2)

- The collected data is retained for a maximum of three months
- Different privacy budgets per feature

Apple (3)

Source: https://machinelearning.apple.com/research/learning-with-privacy-at-scale

Apple (4)

Source: <u>https://machinelearning.apple.com/research/learning-with-privacy-at-scale</u>

Apple (5)

"key": "com.apple.keyboard.Emoji.en_US.EmojiKeyboard",

"parameters": {"epsilon":4,"k":65536,"m":1024},

Source: <u>https://machinelearning.apple.com/research/learning-with-privacy-at-scale</u>

Apple (6)

Source: https://machinelearning.apple.com/research/learning-with-privacy-at-scale

Microsoft

- Targets the application telemetry:
 - Application usage statistics in Microsoft Windows
- Local Differential Privacy

Microsoft (2)

Source: https://www.microsoft.com/en-us/research/blog/collecting-telemetry-data-privately/

Limitations of DP

Limitations of DP

- Finding the perfect amount of noise to add is hard
 - Privacy vs Model Utility
- Computationally expensive in some cases
- Needs large databases to work on
- Without privacy budgets slow leaks can lead to full privacy loss

Privacy vs Model Utility

Source: <u>https://www.semanticscholar.org/paper/Federated-Learning-With-Differential-Privacy%3A-and-Wei-</u> Li/afa778ba0ba6333e25671cfb691a4bdda13b2868 5

Conclusions

Take away

- DP is based upon noise addition
 - On data
 - On predictions
- Not only the ML model accuracy is relevant
 - Also the **data privacy**
 - Privacy vs Model Utility
- To prevent full information leak
 - Privacy budget

References

- 1. Dwork, C., & Roth, A. (2014). The algorithmic foundations of differential privacy. Foundations and Trends[®] in Theoretical Computer Science, 9(3–4), 211-407.
- 2. <u>https://www.statice.ai/post/what-is-differential-privacy-definition-mechanisms-examples</u>
- 3. <u>https://www.nist.gov/video/what-differential-privacy</u>
- 4. <u>https://privacytools.seas.harvard.edu/differential-privacy</u>
- 5. <u>https://www.educative.io/answers/what-is-differentially-private-sgd</u>
- 6. Rahimian, S., Orekondy, T., & Fritz, M. (2020). Sampling attacks: Amplification of membership inference attacks by repeated queries. arXiv preprint arXiv:2009.00395.
- 7. <u>https://www.nist.gov/blogs/cybersecurity-insights/how-deploy-machine-learning-differential-privacy</u>
- 8. <u>https://opacus.ai/tutorials/</u>
- 9. <u>https://blog.tensorflow.org/2019/03/introducing-tensorflow-privacy-learning.html</u>

References (2)

10. <u>https://www.apple.com/privacy/docs/Differential_Privacy_Overview.pdf</u>

11. <u>https://machinelearning.apple.com/research/learning-with-privacy-at-scale</u>

12. <u>https://www.microsoft.com/en-us/research/blog/collecting-telemetry-data-privately/</u>

13. <u>https://www.ncsl.org/technology-and-communication/differential-privacy-for-census-data-explained</u>

14. Erlingsson, Ú., Pihur, V., & Korolova, A. (2014, November). Rappor: Randomized aggregatable privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC conference on computer and communications security (pp. 1054-1067).