Paradigme de Programare

Conf. dr. ing. Andrei Olaru

andrei.olaru@upb.ro | cs@andreiolaru.ro Departamentul de Calculatoare

2024

Introducere λ -Expresii Reducere Evaluare λ_0 şi TDA Racket vs. λ_0 3:1/60

Cursul 3: Calcul Lambda

$$(\lambda \mathbf{x}. \mathbf{x} \mathbf{y}) \rightarrow_{\beta} \mathbf{y}$$

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 2 / 60

- Introducere
- 2 Lambda-expresii
- Reducere
- Evaluare
- 5 Limbajul lambda-0 şi incursiune în TDA
- Racket vs. lambda-0

Introducere

ntroducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 4/60

- ne punem problema dacă putem realiza un calcul sau nu → pentru a demonstra trebuie să avem un model simplu al calculului (cum realizăm calculul, în mod formal).
- un model de calculabilitate trebuie să fie cât mai simplu, atât ca număr de operații disponibile cât și ca mod de construcție a valorilor.
- corectitudinea unui program se demonstrează mai ușor dacă limbajul de programare este mai apropiat de mașina teoretică (modelul abstract de calculabilitate).

 $3 \cdot 6 / 60$

λ

 Model de calculabilitate (Alonzo Church, 1932) – introdus în cadrul cercetărilor asupra fundamentelor matematicii.

```
[http://en.wikipedia.org/wiki/Lambda_calculus]
```

- sistem formal pentru exprimarea calculului.
- Echivalent cu Mașina Turing (v. Teza Church-Turing)
- Axat pe conceptul matematic de funcție totul este o funcție

ntroducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0

 $3 \cdot 7 / 60$

Aplicaţii ale calculului λ

- Aplicații importante în
 - programare
 - demonstrarea formală a corectitudinii programelor, datorită modelului simplu de execuție

Baza teoretică a numeroase limbaje:
 LISP, Scheme, Haskell, ML, F#, Clean, Clojure, Scala, Erlang etc.

Lambda-expresii

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3:8/60

 \bigcirc $x \rightarrow \text{variabila (numele) } x$

 \bigcirc $x \rightarrow \text{variabila (numele)} x$

- $\mathbf{0} x \rightarrow \text{variabila (numele)} x$
- 2 $\lambda x.x \rightarrow$ funcția identitate
- $\delta \lambda x.\lambda y.x \rightarrow \text{functie selector}$

- $\mathbf{0} x \rightarrow \text{variabila (numele)} x$
- 2 $\lambda x.x \rightarrow$ funcția identitate
- **3** $\lambda x.\lambda y.x \rightarrow$ funcție selector
- $(\lambda x.x \ y) \rightarrow \text{aplicația} \text{ funcției identitate asupra parametrului actual } y$

- \bigcirc $x \rightarrow \text{variabila (numele)} x$
- $2 \lambda x.x \rightarrow \text{functia identitate}$
- $\delta \lambda x. \lambda y. x \rightarrow \text{functie selector}$
- ($\lambda x.x y$) \rightarrow aplicatia funcției identitate asupra parametrului actual y
- \bigcirc $(\lambda x.(x \ x) \ \lambda x.x) \rightarrow ?$

- $\mathbf{0} x \rightarrow \text{variabila (numele) } x$
- $2 \lambda x.x \rightarrow \text{funcția identitate}$
- **3** $\lambda x.\lambda y.x \rightarrow$ funcție selector
- ($\lambda x.x y$) \rightarrow aplicația funcției identitate asupra parametrului actual y

Intuitiv, evaluarea aplicației ($\lambda x.x$ y) presupune substituția textuală a lui x, în corp, prin $y \to$ rezultat y.

 $3 \cdot 10 / 60$

+ λ -expresie

- Variabilă: o variabilă x este o λ -expresie;
- Funcție: dacă x este o variabilă și E este o λ-expresie, atunci λx.E este o λ-expresie, reprezentând funcția anonimă, unară, cu parametrul formal x și corpul E;
- Aplicație: dacă F și A sunt λ -expresii, atunci (F A) este o λ -expresie, reprezentând aplicația expresiei F asupra parametrului actual A.

ntroducere **λ-Expresii** Reducere Evaluare λ₀ și TDA Racket vs. 2

$((\lambda x.\lambda y.x z) t)$

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3:11/60

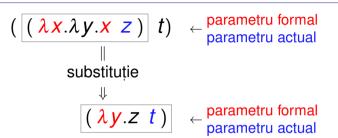
3:11/60

$$((\lambda x.\lambda y.x z)) t) \leftarrow \frac{\text{parametru formal}}{\text{parametru actual}}$$

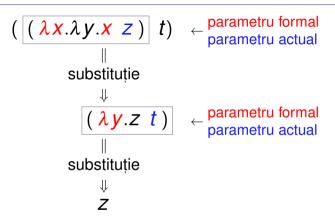
Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0

$$(\begin{array}{c|c} (\lambda x.\lambda y.x & z) & t) & \leftarrow \begin{array}{c} \text{parametru formal} \\ \text{parametru actual} \\ \text{substituție} \\ & \downarrow \\ & (\lambda y.z & t) \end{array}$$

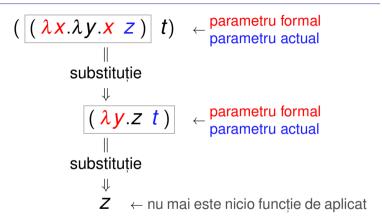
Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 11 / 60



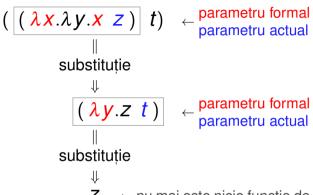
Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 11 / 60



Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3: 11/60



Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 11 / 60



 $Z \leftarrow$ nu mai este nicio funcție de aplicat cum știm ce reducem, cum reducem, în ce ordine, și ce apariții ale variabilelor înlocuim?

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 · 11 / 60

Reducere

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 12 / 60

 $3 \cdot 13 / 60$

- β -redex: o λ -expresse de forma: $(\lambda x. E A)$
 - $E \lambda$ -expresie este corpul funcției
 - $A \lambda$ -expresie este parametrul actual
- β -redexul se reduce la $E_{[A/x]} E$ cu toate aparițiile libere ale lui x din E înlocuite cu A prin substituție textuală.

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0

+ Apariție legată O apariție x_n a unei variabile x este legată într-o expresie E dacă:

- $E = \lambda x.F$ sau
- $E = \dots \lambda x_n . F \dots$ sau
- $E = \dots \lambda x.F \dots$ și x_n apare în F.

+ Apariție liberă O apariție a unei variabile este liberă într-o expresie dacă nu este legată în acea expresie.

Atenție! În raport cu o expresie dată!

 $3 \cdot 15 / 60$

★ Mod de gândire

· O apariție legată în expresie este o apariție a parametrului formal al unei funcții definite în expresie, în corpul funcției; o apariție liberă este o apariție a parametrului formal al unei funcții definite în exteriorul expresiei, sau nu este parametru formal al niciunei funcții.

★ Mod de gândire

· O apariție legată în expresie este o apariție a parametrului formal al unei funcții definite în expresie, în corpul funcției; o apariție liberă este o apariție a parametrului formal al unei funcții definite în exteriorul expresiei, sau nu este parametru formal al niciunei funcții.

x ← apariție liberă

• $(\lambda y. x z) \leftarrow$ apariție încă liberă, nu o leagă nimeni

★ Mod de gândire

- · O apariție legată în expresie este o apariție a parametrului formal al unei funcții definite în expresie, în corpul funcției; o apariție liberă este o apariție a parametrului formal al unei funcții definite în exteriorul expresiei, sau nu este parametru formal al niciunei funcții.
 - x ← apariție liberă
 - $(\lambda y. x z) \leftarrow \text{apariție încă liberă, nu o leagă nimeni}$
 - $\lambda \underset{\langle 2 \rangle}{x} . (\lambda y. \underset{\langle 1 \rangle}{x} z) \leftarrow \lambda \underset{\langle 2 \rangle}{x} leagă$ apariția $\underset{\langle 1 \rangle}{x}$

★ Mod de gândire

- · O apariție legată în expresie este o apariție a parametrului formal al unei funcții definite în expresie, în corpul funcției; o apariție liberă este o apariție a parametrului formal al unei funcții definite în exteriorul expresiei, sau nu este parametru formal al niciunei funcții.
 - x ← apariție liberă
 - $(\lambda y. \underset{<1>}{x} z) \leftarrow \text{apariţie încă liberă, nu o leagă nimeni}$
 - $\lambda \underset{\langle 2 \rangle}{x} . (\lambda y. \underset{\langle 1 \rangle}{x} z) \leftarrow \underset{\langle 2 \rangle}{\lambda} \underset{\langle 2 \rangle}{x} leagă$ apariția $\underset{\langle 1 \rangle}{x}$
 - $(\lambda \underset{<2>}{x} \underbrace{(\lambda y. \underset{<1>}{x} z)}_{\text{corp } \lambda x_2} \overset{(\lambda y. \underset{<3>}{x})}{\times} \overset{(\lambda y. \underset{<3>}{x})}{\leftarrow} \text{pului funcției cu parametrul formal } x (\lambda x_2)$

★ Mod de gândire

- · O apariție legată în expresie este o apariție a parametrului formal al unei funcții definite în expresie, în corpul funcției; o apariție liberă este o apariție a parametrului formal al unei funcții definite în exteriorul expresiei, sau nu este parametru formal al niciunei funcții.
 - x ← apariție liberă
 - $(\lambda y. x Z)$ \leftarrow apariție încă liberă, nu o leagă nimeni
 - $\lambda \underset{\langle 2 \rangle}{x} . (\lambda y. \underset{\langle 1 \rangle}{x} z) \leftarrow \underset{\langle 2 \rangle}{\lambda} \underset{\langle 2 \rangle}{x} leagă$ apariția $\underset{\langle 1 \rangle}{x}$
 - $(\lambda \underset{<2>}{x} \underbrace{(\lambda y. \underset{<1>}{x} z)}_{\text{corp } \lambda x_2} \underset{<3>}{x})$ \leftarrow apariția x_3 este liberă este în exteriorul corpului funcției cu parametrul formal x (λx_2)
 - ullet $\lambda \frac{\chi}{<4>} .(\lambda \frac{\chi}{<2>} .(\lambda y. \frac{\chi}{<1>} z) \frac{\chi}{<3>}) \leftarrow \frac{\lambda \frac{\chi}{<4>}}{<4>} \frac{leag \check{a}}{a} a pariţia \frac{\chi}{<3>}$

Introducere

λ-Expresii

Reducere

Evaluare

λο si TDA

Racket vs. λ

 $3 \cdot 16 / 60$

+ O variabilă este legată într-o expresie dacă toate aparițiile sale sunt legate în acea expresie.

+ O variabilă este liberă într-o expresie dacă nu este legată în acea expresie i.e. dacă cel puțin o apariție a sa este liberă în acea expresie.

Atenție! În raport cu o expresie dată!


```
În expresia E = (\lambda x. x \ x), evidentiem aparitiile lui x:
                      în E
                în E
                în F!
              în E si F
```


- <u>x</u> în *E*
- x în F!
- x în E și F

```
E
```

```
În expresia E = (\lambda x.x \ x), evidențiem aparițiile lui x: (\lambda x \ X \ X) (\lambda x \ X)
```

- $\underset{<1>}{x}$, $\underset{<2>}{x}$ legate în E
- $x = \frac{x}{3}$ liberă în E
- x în F!
- x în E și F

```
În expresia E = (\lambda x. x \ x), evidentiem aparitiile lui x:
(\lambda \underset{<1>}{X} \cdot \underset{<2>}{X} \underset{<3>}{X}).
```

- x, x legate în E
- x liberă în E
- x liberă în F!
- în E si F

În expresia $E = (\lambda x. x \ x)$, evidentiem aparitiile lui x: $(\lambda \underset{<1>}{X} \cdot \underset{<2>}{X} \underset{<3>}{X}).$

- x, x legate în E
- x liberă în E
- x liberă în F!
- x liberă în E și F

În expresia $E = (\lambda x . \lambda z . (z \ x) \ (z \ y))$, evidențiem aparițiile:

Exemplu 🛱

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

În expresia $E = (\lambda x . \lambda z . (z \ x) \ (z \ y))$, evidențiem aparițiile:

$$\mathbf{z}$$
 , \mathbf{z} în \mathbf{F}

în *F*

Exemplu 🛱

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

Exemplu 2

În expresia $E = (\lambda x . \lambda z . (z \ x) \ (z \ y))$, evidențiem aparițiile:

Exemplu 🛱

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

Z

3:18/60

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

În expresia $E = (\lambda x . \lambda z . (z \ x) \ (z \ y))$, evidențiem aparițiile:

Exemplu 🛱

Z

În expresia $E = (\lambda x . \lambda z . (z \ x) \ (z \ y))$, evidențiem aparițiile:

- y, z libere în E <1> <3>
- z, z legate în F
- x liberă în F
- în *E*. X

în *F*

în F

- în *E*
 - în *E*.

Exemplu 🛱

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

Z

3:18/60

În expresia $E = (\lambda x . \lambda z . (z \ x) \ (z \ y))$, evidențiem aparițiile:

- y, z libere în E <1> <3>
- z , z legate în F
- x liberă în F
- x legată în E, dar liberă în F
- în *E*
- în *E*. Z

în F

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

În expresia $E = (\lambda x . \lambda z . (z \ x) \ (z \ y))$, evidențiem aparițiile:

•
$$z$$
, z legate în F

•
$$x \atop <2>$$
 liberă în F

- x legată în E, dar liberă în F
- y liberă în E
- *z* în *E*,

în *F*

Exemplu 🗷

În expresia $E = (\lambda x. \lambda z. (z \ x) \ (z \ y))$, evidențiem aparițiile:

- y, z libere în E
- z , z legate în F
- x liberă în F
- x legată în E, dar liberă în F
- v liberă în E
- z liberă în E, dar legată în F

 $(\lambda \underset{<1>}{X} . \lambda \underset{<1>}{Z} . (\underset{<2>}{Z} \underset{<2>}{X}) (\underset{<3>}{Z} \underset{<1>}{y})).$

Determinarea variabilelor libere și legate

Variabile libere (free variables)

- $FV(x) = \{x\}$
- $FV(\lambda x.E) = FV(E) \setminus \{x\}$
- $FV((E_1 \ E_2)) = FV(E_1) \cup FV(E_2)$

Variabile legate (bound variables)

- $BV(x) = \emptyset$
- $BV(\lambda x.E) = BV(E) \cup \{x\}$
- $BV((E_1 \ E_2)) = BV(E_1) \setminus FV(E_2) \cup BV(E_2) \setminus FV(E_1)$

Expresii închise

+ O expresie închisă este o expresie care nu conține variabile libere.

E Exemplu

- $\bullet (\lambda x.x \ \lambda x.\lambda y.x) \ \cdots$
- \bullet ($\lambda x.x$ a) \cdots
- Variabilele libere dintr-o λ -expresie pot sta pentru alte λ -expresii
- Înaintea evaluării, o expresie trebuie adusă la forma închisă.
- Procesul de înlocuire trebuie să se termine.

Expresii închise

+ O expresie închisă este o expresie care nu conține variabile libere.

Exemplu Exemplu

- $(\lambda x.x \ \lambda x.\lambda y.x) \ o \ \hat{n}$ chisă
- \bullet ($\lambda x.x$ a) \cdots
- Variabilele libere dintr-o λ -expresie pot sta pentru alte λ -expresii
- Înaintea evaluării, o expresie trebuie adusă la forma închisă.
- Procesul de înlocuire trebuie să se termine.

Expresii închise

+ O expresie închisă este o expresie care nu conține variabile libere.

Exemplu

- $(\lambda x.x \ \lambda x.\lambda y.x) \rightarrow \text{închisă}$
- $(\lambda x.x \ a) \rightarrow \text{deschisă}$, deoarece a este liberă
- Variabilele libere dintr-o λ -expresie pot sta pentru alte λ -expresii
- Înaintea evaluării, o expresie trebuie adusă la forma închisă.
- Procesul de înlocuire trebuie să se termine.

+ β -reducere: Evaluarea expresiei ($\lambda x.E$ A), cu E și A λ -expresii, prin substituirea textuală a tuturor aparițiilor libere ale parametrului formal al funcției, x, din corpul acesteia, E, cu parametrul actual, A:

$$(\lambda x. E A) \rightarrow_{\beta} E_{[A/x]}$$

+ β -redex Expresia ($\lambda x.E$ A), cu E și A λ -expresii – o expresie pe care se poate aplica β -reducerea.

Introducere

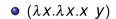
ર-Expresii

Reducere

Evaluare

an si TDA

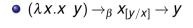
Racket vs. λα



 \bullet $(\lambda x.\lambda y.x y)$

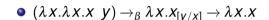
$$\bullet \ (\lambda x.x \ y) \rightarrow_{\beta} x_{[y/x]} \rightarrow y$$

- $\bullet \ (\lambda x.\lambda x.x \ y) \rightarrow_{\beta} \lambda x.x_{[y/x]} \rightarrow \lambda x.x$
- \bullet $(\lambda x.\lambda y.x y)$

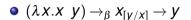


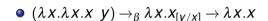
- $\bullet (\lambda x.\lambda x.x y) \rightarrow_{\beta} \lambda x.x_{[y/x]} \rightarrow \lambda x.x$
- $\bullet (\lambda x.\lambda y.x y) \rightarrow_{\beta} \lambda y.x_{[y/x]} \rightarrow \lambda y.y$

$$\bullet (\lambda x.x \ y) \rightarrow_{\beta} x_{[y/x]} \rightarrow y$$



• $(\lambda x.\lambda y.x \ y) \rightarrow_{\beta} \lambda y.x_{[y/x]} \rightarrow \lambda y.y$ Greşit! Variabila liberă y devine legată, schimbându-si semnificatia. $\rightarrow \lambda v^{(a)}.v^{(b)}$





• $(\lambda x.\lambda y.x \ y) \rightarrow_{\beta} \lambda y.x_{[y/x]} \rightarrow \lambda y.y$ Greşit! Variabila liberă y devine legată, schimbându-și semnificația. $\rightarrow \lambda y^{(a)}.y^{(b)}$

Care este problema?

 $3 \cdot 23 / 60$

- **Problemă**: în expresia ($\lambda x.E A$):
 - dacă variabilele libere din A nu au nume comune cu variabilele legate din E: $FV(A) \cap BV(E) = \emptyset$
 - → reducere întotdeauna corectă
 - dacă există variabilele libere din A care au nume comune cu variabilele legate din E: FV(A) ∩ BV(E) ≠ Ø
 - → reducere potențial greșită
- Soluție: redenumirea variabilelor legate din E, ce coincid cu cele libere din $A \rightarrow \alpha$ -conversie.

ntroducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ

- **Problemă**: în expresia (λx.E A):
 - dacă variabilele libere din A nu au nume comune cu variabilele legate din E: $FV(A) \cap BV(E) = \emptyset$
 - → reducere întotdeauna corectă
 - dacă există variabilele libere din A care au nume comune cu variabilele legate din E: $FV(A) \cap BV(E) \neq \emptyset$
 - → reducere potențial greșită
- Soluție: redenumirea variabilelor legate din E, ce coincid cu cele libere din A → α-conversie.

$$(\lambda x.\lambda y.x \ y) \rightarrow_{\alpha} (\lambda x.\lambda z.x \ y) \rightarrow_{\beta} \lambda z.x_{[y/x]} \rightarrow \lambda z.y$$

Introduce

λ-Expresii

Reducere

Evaluare

λο si TDA

Backet vs. 3

3:23/60

 $3 \cdot 24 / 60$

+ α -conversie: Redenumirea sistematică a variabilelor legate dintr-o funcție: $\lambda x.E \rightarrow_{\alpha} \lambda y.E_{[v/x]}$. Se impun două condiții.

- $\bullet \lambda x.y \rightarrow_{\alpha} \lambda y.y_{[v/x]} \rightarrow \lambda y.y$
- $\bullet \lambda x.\lambda y.x \rightarrow_{\alpha} \lambda y.\lambda y.x_{[y/x]} \rightarrow \lambda y.\lambda y.y$

+ α -conversie: Redenumirea sistematică a variabilelor legate dintr-o funcție: $\lambda x.E \rightarrow_{\alpha} \lambda y.E_{[v/x]}$. Se impun două condiții.

- $\lambda x.y \rightarrow_{\alpha} \lambda y.y_{[v/x]} \rightarrow \lambda y.y \rightarrow Gresit!$
- $\bullet \lambda x.\lambda y.x \rightarrow_{\alpha} \lambda y.\lambda y.x_{[y/x]} \rightarrow \lambda y.\lambda y.y$

+ α -conversie: Redenumirea sistematică a variabilelor legate dintr-o funcție: $\lambda x.E \rightarrow_{\alpha} \lambda y.E_{[v/x]}$. Se impun două condiții.

- $\lambda x.y \rightarrow_{\alpha} \lambda y.y_{[v/x]} \rightarrow \lambda y.y \rightarrow Gresit!$
- $\lambda x.\lambda y.x \rightarrow_{\alpha} \lambda y.\lambda y.x_{[v/x]} \rightarrow \lambda y.\lambda y.y \rightarrow \text{Gresit!}$

+ α -conversie: Redenumirea sistematică a variabilelor legate dintrofuncție: $\lambda x.E \rightarrow_{\alpha} \lambda y.E_{[v/x]}$. Se impun două condiții.

- $\lambda x.y \rightarrow_{\alpha} \lambda y.y_{[y/x]} \rightarrow \lambda y.y \rightarrow Gresit!$
- $\lambda x.\lambda y.x \rightarrow_{\alpha} \lambda y.\lambda y.x_{[y/x]} \rightarrow \lambda y.\lambda y.y \rightarrow \text{Greșit!}$

: Condiții

- y nu este o variabilă liberă, existentă deja în E
- ullet orice apariție liberă în E rămâne liberă în $E_{[y/x]}$

• $\lambda x.\lambda x.(x y) \rightarrow_{\alpha} \lambda y.\lambda x.(x y)$

 $\bullet \lambda x.\lambda y.(y x) \rightarrow_{\alpha} \lambda y.\lambda y.(y y)$

• $\lambda x.\lambda y.(y y) \rightarrow_{\alpha} \lambda y.\lambda y.(y y)$

• $\lambda x.(x y) \rightarrow_{\alpha} \lambda z.(z y) \rightarrow \text{Corect!}$

• $\lambda x.\lambda x.(x\,y) \rightarrow_{\alpha} \lambda y.\lambda x.(x\,y) \rightarrow$ Greșit! y este liberă în $\lambda x.(x\,y)$

 $\bullet \ \lambda x.\lambda y.(y x) \rightarrow_{\alpha} \lambda y.\lambda y.(y y)$

• $\lambda x.\lambda y.(y y) \rightarrow_{\alpha} \lambda y.\lambda y.(y y)$

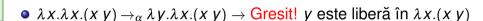
• $\lambda x.(x \ v) \rightarrow_{\alpha} \lambda z.(z \ v) \rightarrow \text{Corect!}$

• $\lambda x.\lambda x.(x v) \rightarrow_{\alpha} \lambda v.\lambda x.(x v) \rightarrow$ Gresit! v este liberă în $\lambda x.(x v)$

• $\lambda x.\lambda y.(yx) \rightarrow_{\alpha} \lambda y.\lambda y.(yy) \rightarrow$ Gresit! Aparitia liberă a lui x din $\lambda y.(yx)$ devine legată, după substituire, în $\lambda y \cdot (y y)$

 \bullet $\lambda x.\lambda y.(yy) \rightarrow_{\alpha} \lambda y.\lambda y.(yy)$

• $\lambda x.(x y) \rightarrow_{\alpha} \lambda z.(z y) \rightarrow \text{Corect!}$



- $\lambda x.\lambda y.(y x) \rightarrow_{\alpha} \lambda y.\lambda y.(y y) \rightarrow$ Greşit! Apariția liberă a lui x din $\lambda y.(y x)$ devine legată, după substituire, în $\lambda y.(y y)$
- $\lambda x.\lambda y.(y y) \rightarrow_{\alpha} \lambda y.\lambda y.(y y) \rightarrow \text{Corect!}$

+ Pas de reducere: O secvență formată dintr-o α -conversie și o β -reducere, astfel încât a doua se produce fără coliziuni: $E_1 \rightarrow E_2 \equiv E_1 \rightarrow_{\alpha} E_3 \rightarrow_{\beta} E_2$.

+ Secvență de reducere: Succesiune de zero sau mai mulți pași de reducere:

 $E_1 \to^* E_2.$

Reprezintă un element din închiderea reflexiv-tranzitivă a relației ightarrow .

Introducere

R-Expresii

Reducere

Evaluare

a si TD/

Racket vs. λ

: Reducere

- $E_1 \rightarrow E_2 \implies E_1 \rightarrow^* E_2$ un pas este o secventă
- $E \rightarrow^* E$ zero pasi formează o secventă
- $E_1 \rightarrow^* E_2 \land E_2 \rightarrow^* E_3 \Rightarrow E_1 \rightarrow^* E_3$ tranzitivitate

$$((\lambda x.\lambda y.(y \ x) \ y) \ \lambda x.x) \rightarrow (\lambda z.(z \ y) \ \lambda x.x) \rightarrow (\lambda x.x \ y) \rightarrow y$$

$$\Rightarrow$$

$$((\lambda x.\lambda y.(y \ x) \ y) \ \lambda x.x) \rightarrow^* y$$

Evaluare

Introducere λ -Expresii Reducere **Evaluare** λ_0 şi TDA Racket vs. λ_0 3 : 28 / 60

- · Dacă am vrea să construim o mașină de calcul care să aibă ca program o λ -expresie și să aibă ca operație de bază pasul de reducere, ne punem câteva întrebări:
- Când se termină calculul? Se termină întotdeauna?
- Dacă mai multe secvențe de reducere se termină, obținem întotdeauna același rezultat?
- Comportamentul depinde de secvenţa de reducere?
- Dacă rezultatul este unic, cum îl obținem?

$$\Omega = (\lambda X.(X X) \lambda X.(X X)) \rightarrow (\lambda X.(X X) \lambda X.(X X)) \rightarrow^* \dots$$

$$\Omega = (\lambda X.(X X) \lambda X.(X X)) \rightarrow (\lambda X.(X X) \lambda X.(X X)) \rightarrow^* \dots$$

 Ω nu admite nicio secventă de reducere care se termină.

+ Expresie reductibilă este o expresie care admite (cel puțin o) secventă de reducere care se termină.

 \cdot expresia Ω nu este reductibilă.

Introducere

λ-Expresii

Reducere

Evaluare

λο si TDA

Racket vs. 2

$$\boldsymbol{E} = (\lambda \boldsymbol{x}. \boldsymbol{y} \ \Omega)$$

$$ightarrow$$
 $E
ightarrow$ y sau

$$ightarrow E
ightarrow E
ightarrow y$$
 sau...

Exemple
$$\rightarrow E \rightarrow y$$
 $\rightarrow E \rightarrow E \rightarrow E \rightarrow \cdots$
 $\stackrel{n}{\rightarrow} y, n \ge 0$
 $\stackrel{n}{\rightarrow} y, n \ge 0$


```
E = (\lambda x. y \Omega)
                      sau
\rightarrow E \rightarrow y
                                 sau

ightarrow E 
ightarrow E 
ightarrow V
                                    sau...
\stackrel{n}{\rightarrow}^{*} y, n \geq 0
```

- E are o secventă de reducere care nu se termină;
- dar E are forma normală $y \Rightarrow E$ este reductibilă;
- lungimea secventelor de reducere ale E este nemărginită.

Forme normale Cum stim că s-a terminat calculul?

 $3 \cdot 32 / 60$

· Calculul se termină atunci când expresia nu mai poate fi redusă \rightarrow expresia nu mai conține β -redecși.

+ Forma normală a unei expresii este o formă (la care se ajunge prin reducere, care nu mai conține β -redecși i.e. care nu mai poate fi redusă.

ntroducere λ -Expresii Reducere **Evaluare** λ_0 și TDA Racket vs. λ_0

Este necesar să mergem până la Forma Normală?

+ Forma normală funcțională – FNF este o formă $\lambda x.F$, în care F poate conține β -redecși.

Exemplu

$$(\lambda x.\lambda y.(x \ y) \ \lambda x.x) \rightarrow_{FNF} \lambda y.(\lambda x.x \ y) \rightarrow_{FN} \lambda y.y$$

- FN a unei expresii închise este în mod necesar FNF.
- într-o FNF nu există o necesitate imediată de a evalua eventualii β -redecși interiori (funcția nu a fost încă aplicată).

Introducere

-Expresii

Reducere

Evaluare

λο si TDA

Racket vs. λα

Teorema Church-Rosser / diamantului Dacă $E \to^* E_1$ și $E \to^* E_2$, atunci există E_3 astfel încât $E_1 \to^* E_3$ și $E_2 \to^* E_3$.

$$E \overset{*}{\underset{*}{\bigvee}} \overset{E_1}{\underset{E_2}{\bigvee}} \overset{*}{\underset{*}{\bigvee}} E_3$$

C Corolar Dacă o expresie este reductibilă, forma ei normală este unică. Ea corespunde valorii expresiei.

troducere λ -Expresii Reducere **Evaluare** λ_0 și TDA Racket vs. λ_0 3 : 34 / 60

Unicitatea formei normale Exemplu

3:35/60

 $(\lambda x.\lambda y.(x y) (\lambda x.x y))$

Introducere λ -Expresii Reducere **Evaluare** λ_0 și TDA Racket vs. λ_0

3:35/60

 $(\lambda x.\lambda y.(x \ y) \ (\lambda x.x \ y))$

- $\bullet \to \lambda z.((\lambda x.x \ y) \ z) \to \frac{\lambda z.(y \ z)}{} \to_{\alpha} \lambda a.(y \ a)$
- $\bullet \rightarrow (\lambda x.\lambda y.(x \ y) \ y) \rightarrow \lambda w.(y \ w) \rightarrow_{\alpha} \lambda a.(y \ a)$

$$(\lambda x.\lambda y.(x y) (\lambda x.x y))$$

- $\bullet \to \lambda z.((\lambda x.x \ y) \ z) \to \frac{\lambda z.(y \ z)}{} \to_{\alpha} \lambda a.(y \ a)$
- $\bullet \rightarrow (\lambda x.\lambda y.(x \ y) \ y) \rightarrow \frac{\lambda w.(y \ w)}{\lambda} \rightarrow_{\alpha} \lambda a.(y \ a)$

- Forma normală corespunde unei clase de expresii, echivalente sub redenumiri sistematice.
- Valoarea este un anumit membru al acestei clase de echivalentă.
- ⇒ Valorile sunt echivalente în raport cu redenumirea.

Introducer

Cum putem organiza reducerea?

+ Reducere stânga-dreapta: Reducerea celui mai superficial și mai din stânga β-redex.

$$(\underbrace{(\lambda x.x \ \lambda x.y)}(\lambda x.(x \ x) \ \lambda x.(x \ x))) \rightarrow \underbrace{(\lambda x.y \ \Omega)} \rightarrow y$$

+ Reducere dreapta-stânga: Reducerea celui mai adânc și mai din dreapta β-redex.

Exemplu

$$(\lambda X.(\lambda X.X \lambda X.Y) (\lambda X.(X X) \lambda X.(X X))) \rightarrow (\lambda X.(\lambda X.X \lambda X.Y) \Omega) \rightarrow \dots$$

Introducere

λ-Expresii

Reducere

Evaluare

a si TDA

Racket vs. λ

Ce modalitate alegem?

 $3 \cdot 37 / 60$

Teorema normalizării Dacă o expresie este reductibilă, evaluarea stânga-dreapta a acesteia se termină.

- Teorema normalizării (normalizare = aducere la forma normală) nu garantează terminarea evaluării oricărei expresii, ci doar a celor reductibile!
- Dacă expresia este ireductibilă, nicio reducere nu se va termina.

troducere λ_{0} și TDA Racket vs. λ_{0}

Răspunsuri la întrebări

- Când se termină calculul? Se termină întotdeauna?
 - → se termină cu forma normală [funcțională]. NU se termină decât dacă expresia este reductibilă.
- ② Comportamentul depinde de secvenţa de reducere? → DA.
- Dacă mai multe secvențe de reducere se termină, obținem întotdeauna același rezultat?
 - $\rightarrow DA$.
- Dacă rezultatul este unic, cum îl obținem?
 - → Reducere stânga-dreapta.
- Oare este valoarea expresiei?
 - \rightarrow Forma normală [funcțională] (FN[F]).

Ordine de evaluare

- + Evaluare aplicativă (eager) corespunde unei reduceri mai degrabă dreapta-stânga. Parametrii funcțiilor sunt evaluați înaintea aplicării funcției.
- + Evaluare normală (*lazy*) corespunde reducerii stânga-dreapta. Parametrii funcțiilor sunt evaluați la cerere.
- + Funcție strictă funcție cu evaluare aplicativă.
- + Funcție nestrictă funcție cu evaluare normală.

troducere λ -Expresii Reducere **Evaluare** λ_0 și TDA

 Evaluarea aplicativă prezentă în majoritatea limbajelor: C, Java, Scheme, PHP etc.

(+ (+ 2 3) (* 2 3))
$$\rightarrow$$
 (+ 5 6) \rightarrow 11

• Nevoie de funcții nestricte, chiar în limbajele aplicative: if, and, or etc.

(if (< 2 3) (+ 2 3) (* 2 3))
$$\rightarrow$$
 (< 2 3) \rightarrow #t \rightarrow (+ 2 3) \rightarrow 5

Introducere

Limbajul lambda-0 și incursiune în TDA

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 41/60

$\underset{\text{Scop}}{\text{Limbajul}} \ \lambda_0$

- Am putea crea o maşină de calcul folosind calculul λ maşină de calcul ipotetică;
- Maşina foloseşte limbajul $\lambda_0 \equiv$ calcul lambda;
- Programul → λ-expresie;
 + Legări top-level de expresii la nume.
- Datele $\rightarrow \lambda$ -expresii;
- Funcționarea mașinii → reducere substituție textuală
 - evaluare normală;
 - terminarea evaluării cu forma normală funcțională;
 - se folosesc numai expresii închise.

 Putem reprezenta toate datele prin funcții cărora, convențional, le dăm o semnificație abstractă.

Exemplu
$$T \equiv_{\mathsf{def}} \lambda x. \lambda y. x \qquad F \equiv_{\mathsf{def}} \lambda x. \lambda y. y$$

 Pentru aceste tipuri de date abstracte (TDA) creăm operatori care transformă datele în mod coerent cu interpretarea pe care o dăm valorilor.

Introducere

-Expresii

Reducere

Evaluare

λο si TDA

Racket vs. λο

 $3 \cdot 44 / 60$

+ Tip de date abstract - TDA - Model matematic al unei mulțimi de valori și al operațiilor valide pe acestea.

: Componente

- constructori de bază: cum se generează valorile;
- operatori: ce se poate face cu acestea;
- axiome: cum lucrează operatorii / ce restricții există.

troducere λ-Expresii Reducere Evaluare λ₀ și TDA Racket vs. 2

Constructori: $\begin{vmatrix} T : & \rightarrow Bool \\ F : & \rightarrow Bool \end{vmatrix}$

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 45 / 60

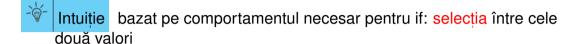
Specificare

· Constructori: $\begin{vmatrix} T : \rightarrow Bool \\ F : \rightarrow Bool \end{vmatrix}$

Specificare

· Constructori: $\begin{vmatrix} T : & \rightarrow Bool \\ F : & \rightarrow Bool \end{vmatrix}$

Implementarea constructorilor de bază



- $T \equiv_{\mathsf{def}} \lambda x.\lambda y.x$
- $F \equiv_{\mathsf{def}} \lambda x. \lambda y. y$

Implementarea operatorilor

• if $\equiv_{def} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$

Introducere λ -Expresii Reducere Evaluare $\lambda_0 \approx i \, TDA$ Racket vs. $\lambda_0 = 3:47/60$

- if $\equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ y) \ F)$

Introducere λ -Expresii Reducere Evaluare λ_0 şi TDA Racket vs. λ_0 3 : 47 / 60

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{def} \lambda x. \lambda y. ((x \ y) \ F)$
 - $\bullet \ ((\textit{and} \ T) \ \textit{a}) \rightarrow ((\lambda \textit{x}.\lambda \textit{y}.((\textit{x} \ \textit{y}) \ \textit{F}) \ \textit{T}) \ \textit{a}) \rightarrow ((\textit{T} \ \textit{a}) \ \textit{F}) \rightarrow \textit{a}$

Introducere λ -Expresii Reducere Evaluare λ_0 şi TDA Racket vs. λ_0 3 : 47 / 60

 $3 \cdot 47 / 60$

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ y) \ F)$
 - $((and \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ T) \ a) \rightarrow ((T \ a) \ F) \rightarrow a$
 - $((and \ F) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ F) \ a) \rightarrow ((F \ a) \ F) \rightarrow F$

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{def} \lambda x. \lambda y. ((x \ y) \ F)$
 - $((and \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ T) \ a) \rightarrow ((T \ a) \ F) \rightarrow a$
 - $((and \ F) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ F) \ a) \rightarrow ((F \ a) \ F) \rightarrow F$
- or $\equiv_{\mathsf{def}} \lambda x.\lambda y.((x \ T) \ y)$

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ y) \ F)$
 - $((and \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ T) \ a) \rightarrow ((T \ a) \ F) \rightarrow a$
 - $((and \ F) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ F) \ a) \rightarrow ((F \ a) \ F) \rightarrow F$
- or $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ T) \ y)$
 - $((or \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ T) \ y) \ T) \ a) \rightarrow ((T \ T) \ a) \rightarrow T$

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ y) \ F)$
 - $((and \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ T) \ a) \rightarrow ((T \ a) \ F) \rightarrow a$
 - $((and \ F) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ F) \ a) \rightarrow ((F \ a) \ F) \rightarrow F$
- or $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ T) \ y)$
 - $((or \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ T) \ y) \ T) \ a) \rightarrow ((T \ T) \ a) \rightarrow T$
 - $((or\ F)\ a) \rightarrow ((\lambda x.\lambda y.((x\ T)\ y)\ F)\ a) \rightarrow ((F\ T)\ a) \rightarrow a$

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{\mathsf{def}} \lambda x.\lambda y.((x\ y)\ F)$
 - $((and \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ T) \ a) \rightarrow ((T \ a) \ F) \rightarrow a$
 - $((and \ F) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ F) \ a) \rightarrow ((F \ a) \ F) \rightarrow F$
- or $\equiv_{\mathsf{def}} \lambda x.\lambda y.((x \ T) \ y)$
 - $((or \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ T) \ y) \ T) \ a) \rightarrow ((T \ T) \ a) \rightarrow T$
 - $((or\ F)\ a) \rightarrow ((\lambda x.\lambda y.((x\ T)\ y)\ F)\ a) \rightarrow ((F\ T)\ a) \rightarrow a$
- $not \equiv_{def} \lambda x.((x \ F) \ T)$

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ y) \ F)$
 - $((and \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ T) \ a) \rightarrow ((T \ a) \ F) \rightarrow a$
 - $((and \ F) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ F) \ a) \rightarrow ((F \ a) \ F) \rightarrow F$
- or $\equiv_{\mathsf{def}} \lambda x.\lambda y.((x \ T) \ y)$
 - $((or \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ T) \ y) \ T) \ a) \rightarrow ((T \ T) \ a) \rightarrow T$
 - $((or\ F)\ a) \rightarrow ((\lambda x.\lambda y.((x\ T)\ y)\ F)\ a) \rightarrow ((F\ T)\ a) \rightarrow a$
- $not \equiv_{def} \lambda x.((x \ F) \ T)$
 - (not T) \rightarrow ($\lambda x.((x F) T) T$) \rightarrow ((T F) T) \rightarrow F

- $if \equiv_{\mathsf{def}} \lambda c.\lambda x.\lambda y.((c \ x) \ y)$
- and $\equiv_{\mathsf{def}} \lambda x.\lambda y.((x\ y)\ F)$
 - $((and \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ T) \ a) \rightarrow ((T \ a) \ F) \rightarrow a$
 - $((and \ F) \ a) \rightarrow ((\lambda x.\lambda y.((x \ y) \ F) \ F) \ a) \rightarrow ((F \ a) \ F) \rightarrow F$
- or $\equiv_{\mathsf{def}} \lambda x. \lambda y. ((x \ T) \ y)$
 - $((or \ T) \ a) \rightarrow ((\lambda x.\lambda y.((x \ T) \ y) \ T) \ a) \rightarrow ((T \ T) \ a) \rightarrow T$
 - $\bullet \ ((\textit{or} \ F) \ \textit{a}) \rightarrow ((\lambda x.\lambda y.((x \ T) \ \textit{y}) \ F) \ \textit{a}) \rightarrow ((F \ T) \ \textit{a}) \rightarrow \textit{a}$
- $not \equiv_{def} \lambda x.((x \ F) \ T)$
 - (not T) \rightarrow (λx .((x F) T) T) \rightarrow ((T F) T) \rightarrow F
 - (not F) \rightarrow ($\lambda x.((x F) T) F$) \rightarrow ((F F) T) \rightarrow T

3:48/60

 Intuiție: pereche → funcție ce așteaptă selectorul, pentru a-l aplica asupra membrilor

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0

3:48/60

 Intuiție: pereche → funcție ce așteaptă selectorul, pentru a-l aplica asupra membrilor

•
$$fst \equiv_{\mathsf{def}} \lambda p.(p \ T)$$

 Intuiție: pereche → funcție ce așteaptă selectorul, pentru a-l aplica asupra membrilor

- $fst \equiv_{\mathsf{def}} \lambda p.(p \ T)$
 - $(fst\ ((pair\ a)\ b)) \rightarrow (\lambda p.(p\ T)\ \lambda z.((z\ a)\ b)) \rightarrow (\lambda z.((z\ a)\ b)\ T) \rightarrow ((T\ a)\ b) \rightarrow a$

 Intuiție: pereche → funcție ce așteaptă selectorul, pentru a-l aplica asupra membrilor

- $fst \equiv_{\mathsf{def}} \lambda p.(p \ T)$ • $(fst \ ((pair \ a) \ b)) \rightarrow (\lambda p.(p \ T) \ \lambda z.((z \ a) \ b)) \rightarrow (\lambda z.((z \ a) \ b) \ T) \rightarrow ((T \ a) \ b) \rightarrow a$
- $snd \equiv_{def} \lambda p.(p F)$

- Intuiție: pereche → funcție ce așteaptă selectorul, pentru a-l aplica asupra membrilor
- $fst \equiv_{\mathsf{def}} \lambda p.(p \ T)$
 - $(fst\ ((pair\ a)\ b)) \rightarrow (\lambda p.(p\ T)\ \lambda z.((z\ a)\ b)) \rightarrow (\lambda z.((z\ a)\ b)\ T) \rightarrow ((T\ a)\ b) \rightarrow a$
- $snd \equiv_{def} \lambda p.(p F)$
 - $(snd\ ((pair\ a)\ b)) \rightarrow (\lambda p.(p\ F)\ \lambda z.((z\ a)\ b)) \rightarrow (\lambda z.((z\ a)\ b)\ F) \rightarrow ((F\ a)\ b) \rightarrow b$

- Intuiție: pereche → funcție ce așteaptă selectorul, pentru a-l aplica asupra membrilor
- $fst \equiv_{\mathsf{def}} \lambda p.(p \ T)$
 - $(fst\ ((pair\ a)\ b)) \rightarrow (\lambda p.(p\ T)\ \lambda z.((z\ a)\ b)) \rightarrow (\lambda z.((z\ a)\ b)\ T) \rightarrow ((T\ a)\ b) \rightarrow a$
- $snd \equiv_{def} \lambda p.(p F)$
 - $(snd\ ((pair\ a)\ b)) \rightarrow (\lambda p.(p\ F)\ \lambda z.((z\ a)\ b)) \rightarrow (\lambda z.((z\ a)\ b)\ F) \rightarrow ((F\ a)\ b) \rightarrow b$
- $pair \equiv_{def} \lambda x. \lambda y. \lambda z. ((z \ x) \ y)$

TDA *Pair* Implementare

- Intuiție: pereche → funcție ce așteaptă selectorul, pentru a-l aplica asupra membrilor
- $fst \equiv_{\mathsf{def}} \lambda p.(p \ T)$
 - $(fst\ ((pair\ a)\ b)) \rightarrow (\lambda p.(p\ T)\ \lambda z.((z\ a)\ b)) \rightarrow (\lambda z.((z\ a)\ b)\ T) \rightarrow ((T\ a)\ b) \rightarrow a$
- $snd \equiv_{def} \lambda p.(p F)$
 - $(snd\ ((pair\ a)\ b)) \rightarrow (\lambda p.(p\ F)\ \lambda z.((z\ a)\ b)) \rightarrow (\lambda z.((z\ a)\ b)\ F) \rightarrow ((F\ a)\ b) \rightarrow b$
- $pair \equiv_{def} \lambda x. \lambda y. \lambda z. ((z \ x) \ y)$
 - $((pair\ a)\ b) \rightarrow ((\lambda x.\lambda y.\lambda z.((z\ x)\ y)\ a)\ b) \rightarrow \lambda z.((z\ a)\ b)$

λ

Implementare

Intuiție: listă → pereche (head, tail)

- $nil \equiv_{def} \lambda x.T$
- cons ≡_{def} pair
 - $\bullet \ ((\textit{cons e}) \ L) \rightarrow ((\lambda x. \lambda y. \lambda z. ((z \ x) \ y) \ e) \ L) \rightarrow \lambda z. ((z \ e) \ L)$
- $car \equiv_{def} fst$ $cdr \equiv_{def} snd$

Intuiție: număr → listă cu lungimea egală cu valoarea numărului

- zero ≡_{def} nil
- $succ \equiv_{def} \lambda n.((cons\ nil)\ n)$
- pred ≡_{def} cdr
- · VeZi și [http://en.wikipedia.org/wiki/Lambda_calculus#Encoding_datatypes]

Absența tipurilor

λ

Chiar avem nevoie de tipuri? - Rolul tipurilor

- Modalitate de exprimare a intenției programatorului;
- Documentare: ce operatori acționează asupra căror obiecte;
- Reprezentarea particulară a valorilor de tipuri diferite:
 1, "Hello", #t etc.;
- Optimizarea operațiilor specifice;
- Prevenirea erorilor;
- Facilitarea verificării formale;

Absența tipurilor

λ

Consecinte asupra reprezentării obiectelor

- Un număr, o listă sau un arbore, posibil desemnate de aceeași valoare!
- Valori și operatori reprezentați de funcții, semnificația fiind dependentă de context.
- Valoare aplicabilă asupra unei alte valori → operator!

Absența tipurilor

λ

Consecinte asupra corectitudinii calculului

- Incapacitatea Maşinii λde a
 - interpreta semnificația expresiilor;
 - asigura corectitudinea acestora (dpdv al tipurilor).
- Delegarea celor două aspecte programatorului;
- Orice operatori aplicabili asupra oricăror valori;
- Construcții eronate acceptate fără avertisment, dar calcule terminate cu
 - valori fără semnificație sau
 - expresii care nu sunt valori (nu au asociată o semnificație), dar sunt ireductibile
 - \rightarrow instabilitate.

Absența tipurilor Consecinte pozitive

 $3 \cdot 53 / 60$

- Flexibilitate sporită în reprezentare;
- Potrivită în situațiile în care reprezentarea uniformă obiectelor, ca liste de simboluri, este convenabilă.

...vin cu prețul unei dificultăți sporite în depanare, verificare și mentenanță

Recursivitate

λ

 $3 \cdot 54 / 60$

Perspective asupra recursivității

- Cum realizăm recursivitatea în λ_0 , dacă nu avem nume de funcții?
 - Textuală: funcție care se autoapelează, folosindu-și numele;
 - Semantică: ce obiect matematic este desemnat de o funcție recursivă, cu posibilitatea construirii de funcții recursive anonime.

ntroducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0

- Lungimea unei liste:
 length ≡_{def} λL.(if (null? L) zero (succ (length (cdr L))))
- Cu ce înlocuim zona subliniată, pentru a evita recursivitatea textuală?
 (expresia pentru length nu este închisă!)
- Putem primi ca parametru o funcție echivalentă computațional cu length?
 Length = def λf L.(if (null? L) zero (succ (f (cdr L))))
- (Length length) = length \rightarrow length este un punct fix al lui Length!
- Cum obţinem punctul fix?

mai multe la [http://en.wikipedia.org/wiki/Lambda_calculus#Recursion_and_fixed_points]

 $Fix = \lambda f.(\lambda x.(f(x x)) \lambda x.(f(x x)))$

- $(Fix F) \rightarrow (\lambda x.(F(x x)) \lambda x.(F(x x))) \rightarrow (F(\lambda x.(F(x x)) \lambda x.(F(x x)))) \rightarrow (F(Fix F))$
- (Fix F) este un punct fix al lui F.
- Fix se numește combinator de punct fix.
- $length \equiv_{def} (Fix \ Length) \sim (Length (Fix \ Length)) \sim \lambda L.(if (null? L) zero (succ ((Fix \ Length) (cdr \ L))))$
- Funcție recursivă, fără a fi textual recursivă!

λ-Expresii

Reducere

------ λο si TDA

Backet vs 20

Racket vs. lambda-0

Introducere λ -Expresii Reducere Evaluare λ_0 și TDA Racket vs. λ_0 3 : 57 / 60

Racket vs. λ_0 Construcția expresiilor / sintaxă

		λ		Racket		
Variabilă/nume		Х		x		
Funcție		$\lambda x.corp$		(lambda (x) corp)		
uncurry		$\lambda x y.corp$		(lambda (x y) corp)		
Aplicare		(F A)		(f a)		
uncurry		(F A1 A2)		(f a1 a2)		
Legare top-level		-		(define nume expr)		
Program		λ -expresie închisă		colecție de legări top-level (define)		
				etc.)		
Introducere	λ-Expresii	Reducere	Evaluare	λ ₀ si TDA	Racket vs. λ ₀	0 - 50 / 00

Racket vs. λ_0 Mai precis

- similar cu λ_0 , folosește S-expresii (bază Lisp);
- tipat dinamic/latent
 - variabilele nu au tip;
 - valorile au tip (3, #f);
 - verificarea se face la execuție, în momentul aplicării unei funcții;
- evaluare aplicativă;
- permite recursivitate textuală;
- avem legări top-level.

Introducer

λ-Expresii

Reducer

Evaluare

λο ei TDΔ

Racket ve 1

Elemente esentiale

- Baza formală a calculului λ:
- expresie λ , β -redex, variabile și apariții legate vs. libere, expresie închisă, α -conversie, β -reducere
- FN și FNF, reducere, reductibilitate, evaluare aplicativă și normală
- TDA şi recursivitate pentru calcul lambda
 Dati feedback la acest curs aici:

[https://docs.google.com/forms/d/e/ 1FAIpQLSeY7VuAt5n6hyHHnNUplLWfWt7UkJBGhk viewform]

