TDA *Bool* Specificare

· Constructori: $\begin{array}{ccc} T: & \rightarrow Bool \\ F: & \rightarrow Bool \end{array}$

 $\begin{array}{c|cccc} & \textit{not}: & \textit{Bool} \rightarrow \textit{Bool} \\ & \textit{and}: & \textit{Bool}^2 \rightarrow \textit{Bool} \\ & \textit{or}: & \textit{Bool}^2 \rightarrow \textit{Natural} \end{array}$

 $\text{-Axiome:} \begin{array}{|c|c|c|} & not: & not(T) = F \\ & not(F) = T \\ & and: & and(T,a) = a \\ & and(F,a) = F \\ & or: & or(T,a) = T \\ & or(F,a) = a \end{array}$

TDA Bool

Implementarea constructorilor de bază

- Intuiție: selecția între cele două valori, true și false
- $T \equiv_{\mathsf{def}} \lambda x \, y.x$
- $F \equiv_{\mathsf{def}} \lambda x \, y.y$
- Comportament de selectori:
 - $(T a b) \rightarrow (\lambda x y.x a b) \rightarrow a$
 - $(F a b) \rightarrow (\lambda x y.y a b) \rightarrow b$

TDA Bool

Implementarea operatorilor

- $not \equiv_{def} \lambda x.(x F T)$
 - (not T) \rightarrow ($\lambda x.(x F T) T$) \rightarrow (T F T) \rightarrow F
 - $(not\ F) \rightarrow (\lambda x.(x\ F\ T)\ F) \rightarrow (F\ F\ T) \rightarrow T$
- and $\equiv_{\mathsf{def}} \lambda x \ y.(x \ y \ F)$
 - (and T a) \rightarrow ($\lambda x y.(x y F) T a$) \rightarrow (T a F) \rightarrow a
 - (and F a) \rightarrow (λx y.(x y F) F a) \rightarrow (F a F) \rightarrow F
- or $\equiv_{\mathsf{def}} \lambda x \ y.(x \ T \ y)$
 - (or T a) \rightarrow (λx y.(x T y) T a) \rightarrow (T T a) \rightarrow T
 - $(or F a) \rightarrow (\lambda x y.(x T y) F a) \rightarrow (F T a) \rightarrow a$

TDA Bool Conditionala if

- Axiome:
 - (if T a b) $\rightarrow a$
 - (*if F a b*) → *b*

- Implementare: $if \equiv_{def} \lambda c t e.(c t e)$
 - (if T a b) \rightarrow ($\lambda c t e \cdot (c t e) T a b$) \rightarrow (T a b) $\rightarrow a$
 - (if F a b) \rightarrow ($\lambda c t e.(c t e) F a b$) \rightarrow (F a b) $\rightarrow b$

• Funcție nestrictă!

TDA Pair Specificare

- Constructori de bază:
 - $pair : A \times B \rightarrow Pair$
- Operatori:
 - fst : Pair → A
 - snd : Pair → B
- Axiome:
 - *fst*(*pair*(*a*,*b*)) = *a*
 - snd(pair(a,b)) = b

TDA Pair Implementare

- Intuiţie: pereche →funcţie ce aşteaptă selectorul, pentru a-l aplica asupra membrilor
- $pair \equiv_{def} \lambda x \ y \ z.(z \ x \ y)$
 - (pair ab) \rightarrow ($\lambda x y z.(z x y) ab$) $\rightarrow \lambda z.(z ab)$
- $fst \equiv_{\mathsf{def}} \lambda p.(p\ T)$
 - $(fst (pair \ a \ b)) \rightarrow (\lambda p.(p \ T) \ \lambda z.(z \ a \ b)) \rightarrow (\lambda z.(z \ a \ b) \ T) \rightarrow (T \ a \ b) \rightarrow a$
- $snd \equiv_{def} \lambda p.(p F)$
 - $(snd(pair\ a\ b)) \rightarrow (\lambda p.(p\ F)\ \lambda z.(z\ a\ b)) \rightarrow (\lambda z.(z\ a\ b)\ F) \rightarrow (F\ a\ b) \rightarrow b$

TDA List Specificare

```
Constructori: \begin{vmatrix} nil : & \rightarrow List \\ cons : & A \times List \rightarrow List \end{vmatrix}
                                 List \ {nil} → A
                  car:
                  cdr:
                                 List \setminus \{nil\} \rightarrow List
· Operatori:
                  null ·
                                List → Bool
                  append: List<sup>2</sup> \rightarrow List
Axiome:
 car:
                 car(cons(e, L)) = e
                cdr(cons(e, L)) = L
 cdr:
 null:
                 null(nil) = T
                 null(cons(e, L)) = F
 append:
                append(nil, B) = B
                 append(cons(e, A), B) = cons(e, append(A, B))
```

TDA List Implementare

- Intuiţie: listă →pereche (head, tail)
- $nil \equiv_{def} \lambda x.T$
- $cons \equiv_{def} pair$
 - $(cons e L) \rightarrow (\lambda x y z.(z x y) e L) \rightarrow \lambda z.(z e L)$
- car _{def} fst
- cdr ≡_{def} snd
- $null \equiv_{def} \lambda L.(L \lambda x y.F)$
 - (null nil) \rightarrow ($\lambda L.(L \lambda x y.F) \lambda x.T) <math>\rightarrow$ ($\lambda x.T ...) <math>\rightarrow T$
 - (null (cons e L)) \rightarrow (λ L.(L λ x y.F) λ z.(z e L)) \rightarrow (λ z.(z e L) λ x y.F) \rightarrow (λ x y.F e L) \rightarrow F

TDA List Implementare append

- append ≡_{def}
 λ A B.(if (null A) B (cons (car A) (append (cdr A) B)))
- \cdot Problemă: expresia $\frac{nu}{n}$ admite formă închisă! \rightarrow vezi eliminarea recursivității textuale.

TDA Natural Implementare

Intuiţie: număr →listă cu lungimea egală cu valoarea numărului

- zero ≡_{def} nil
- $succ \equiv_{def} \lambda n.(cons \ nil \ n)$
- pred ≡_{def} cdr
- zero? ≡_{def} null
- add ≡_{def} append