
Laborator Final
Tema: Recapitulare Generală. Smart Home System �

Poveste: The Architect of Tomorrow

Felicitări! Ai ajuns la finalul stagiului de pregătire. Compania FutureTech te-a angajat
pentru a dezvolta nucleul software al noului lor produs revolut, ionar: Casa Inteligentă (Smart
Home Hub).

Sistemul actual este haotic: fiecare dispozitiv (bec, termostat, cameră video) este gestionat
separat, ducând la cod duplicat s, i greu de întret, inut. Misiunea ta este să creezi o arhitectură
orientată pe obiecte, robustă s, i scalabilă, care să poată gestiona orice tip de dispozitiv într-un
mod unitar.

Va trebui să demonstrezi că stăpânes,ti conceptele de abstractizare, mos,tenire, polimor-
fism, supraîncărcarea operatorilor s, i gestionarea colect, iilor folosind STL.

Scopul laboratorului

• Organizarea modulară a codului (fis, iere Header s, i Source).

• Consolidarea cunos,tint,elor despre Clase Abstracte s, i Metode Virtuale Pure.

• Utilizarea Polimorfismului pentru procesarea uniformă a obiectelor.

• Gestionarea resurselor folosind containere STL (vector).

• Utilizarea membrilor Statici s, i Supraîncărcarea operatorilor.

1

Facultatea de Automatică s, i Calculatoare, UPB Laborator Final – Recapitulare POO

Cerint,e de implementare (9p + 1p oficiu)

IMPORTANT: Organizarea Codului

• Pentru fiecare clasă implementată, trebuie să creat, i o pereche de fis, iere: NumeClasa.h
(declarat, ia clasei) s, i NumeClasa.cpp (implementarea metodelor).

• Funct, ia main se va afla într-un fis, ier separat, main.cpp.

1. Arhitectura de Bază: Dispozitivele (4p)

• Definit, i o clasă abstractă Device (în Device.h/cpp) care să cont, ină:
– Un membru string name s, i unul int id.
– Un constructor care init, ializează aceste câmpuri.
– O metodă pur virtuală void displayStatus() const.
– Un destructor virtual (esent, ial pentru s,tergerea corectă prin pointeri la bază).

• Implementat, i două clase derivate (în fis, iere proprii):
– SmartLight: adaugă un câmp float brightness (0-100). Suprascriet, i displayStatus

pentru a afis,a numele s, i intensitatea luminii.
– Thermostat: adaugă un câmp float temperature. Suprascriet, i displayStatus

pentru a afis,a numele s, i temperatura curentă.

2. Hub-ul Central: Gestiunea Colect, iilor (3p)

• Creat, i clasa SmartHome (în SmartHome.h/cpp) care funct, ionează ca un manager.
• Aceasta trebuie să cont, ină o listă de dispozitive. Folosit, i STL:

#include <vector>
#include "Device.h"
// ...
std::vector<Device*> devices;

• Implementat, i metoda void addDevice(Device* dev) care adaugă un dispozitiv în
sistem.

• Implementat, i destructorul clasei SmartHome care să s,teargă memoria pentru toate
dispozitivele stocate în vector, pentru a evita memory leaks.

3. Operatori s, i Membri Statici (2p)

• Contor Global: Adăugat, i în clasa Device un membru static static int deviceCount
care să t, ină evident,a numărului total de dispozitive active.

– Incrementat, i contorul în constructorul clasei de bază.
– Decrementat, i contorul în destructorul clasei de bază.
– Afis,at, i numărul total de dispozitive la finalul programului main.

• Supraîncărcare operator «: Supraîncărcat, i operatorul de insert, ie în flux («)
pentru clasa SmartHome.

– Acesta trebuie să afis,eze titlul "Raport Smart Home:" urmat de statusul tuturor
dispozitivelor din casă (iterând prin vector s, i apelând displayStatus).

– În main, afis,area întregului sistem trebuie să se facă simplu: cout « myHome «
endl;

2

Facultatea de Automatică s, i Calculatoare, UPB Laborator Final – Recapitulare POO

Ghid Conceptual Recapitulativ

De ce Destructor Virtual?

Atunci când s,tergem un obiect derivat printr-un pointer la clasa de bază (Device* d = new
SmartLight(...); delete d;), dacă destructorul din bază nu este virtual, se va apela doar
destructorul bazei. Destructorul derivatei nu se execută, ceea ce poate duce la scurgeri de
memorie.

Polimorfismul în STL

Containerele STL (precum vector) stochează elemente de acelas, i tip. Pentru a stoca o ierar-
hie de clase (SmartLight s, i Thermostat la un loc), trebuie să stocăm pointeri la clasa de
bază (vector<Device*>). Astfel, la apelul metodelor virtuale, se va decide la runtime care
implementare să fie executată (Late Binding).

Compilare s, i verificare

Deoarece avet, i mai multe fis, iere, trebuie să le compilat, i pe toate împreună pentru a crea
executabilul.

Compilare (listând toate fis,ierele sursă)
g++ -o final_lab main.cpp Device.cpp SmartLight.cpp Thermostat.cpp SmartHome.cpp

SAU (folosind wildcard - compilează toate fis,ierele .cpp din folder)
g++ -o final_lab *.cpp

Rulare
./final_lab

3

Facultatea de Automatică s, i Calculatoare, UPB Laborator Final – Recapitulare POO

Finalizare s, i Încărcare GitHub

Acesta este ultimul laborator. Asigurat, i-vă că at, i parcurs toate cerint,ele pentru a valida
cunos,tint,ele acumulate. Student, ii pot obt, ine până la 3p bonus dacă încarcă toate laboratoarele
până la finalul semestrului.

Pas, i pentru încărcarea solut, iei finale:

(a) Accesat, i linkul GitHub Classroom pentru Laboratorul Final:

https://classroom.github.com/a/pAu-bWfK

(b) Clonat, i repository-ul creat automat.

(c) Încărcat, i sursele pe branch-ul main:

git add .
git commit -m "Lab 13 - Smart Home Implementation"
git push origin main

4

https://classroom.github.com/a/pAu-bWfK

