Laborator Final
Tema: Recapitulare Generala. Smart Home System @&

Poveste: The Architect of Tomorrow

Felicitari! Ai ajuns la finalul stagiului de pregatire. Compania FutureTech te-a angajat
pentru a dezvolta nucleul software al noului lor produs revolutionar: Casa Inteligenta (Smart
Home Hub).

Sistemul actual este haotic: fiecare dispozitiv (bec, termostat, camera video) este gestionat
separat, ducand la cod duplicat si greu de intretinut. Misiunea ta este sa creezi o arhitectura
orientata pe obiecte, robusta si scalabila, care sa poata gestiona orice tip de dispozitiv intr-un
mod unitar.

Va trebui sa demonstrezi ca stapanesti conceptele de abstractizare, mostenire, polimor-
fism, supraincarcarea operatorilor si gestionarea colectiilor folosind STL.

Scopul laboratorului

e Organizarea modularad a codului (fisiere Header si Source).

e Consolidarea cunostintelor despre Clase Abstracte si Metode Virtuale Pure.

Utilizarea Polimorfismului pentru procesarea uniforma a obiectelor.

Gestionarea resurselor folosind containere STL (vector).

Utilizarea membrilor Statici si Supraincarcarea operatorilor.

Facultatea de Automatica si Calculatoare, UPB Laborator Final — Recapitulare POO

Cerinte de implementare (9p + 1p oficiu)

IMPORTANT: Organizarea Codului

e Pentru fiecare clasa implementata, trebuie sa creati o pereche de fisiere: NumeClasa.h
(declaratia clasei) si NumeClasa.cpp (implementarea metodelor).

e Functia main se va afla intr-un fisier separat, main. cpp.
1. Arhitectura de Bazi: Dispozitivele (4p)

e Definiti o clasa abstractd Device (in Device.h/cpp) care si contina:
— Un membru string name si unul int id.
— Un constructor care initializeaza aceste campuri.
— O metoda pur virtuald void displayStatus() const.
— Un destructor virtual (esential pentru stergerea corecta prin pointeri la baza).
e Implementati doud clase derivate (in fisiere proprii):
— SmartLight: adaugd un camp float brightness (0-100). Suprascrieti displayStatus
pentru a afisa numele si intensitatea luminii.

— Thermostat: adauga un cAmp float temperature. Suprascrieti displayStatus
pentru a afisa numele si temperatura curenta.

2. Hub-ul Central: Gestiunea Colectiilor (3p)

e Creati clasa SmartHome (in SmartHome.h/cpp) care functioneazi ca un manager.
e Aceasta trebuie sa contina o lista de dispozitive. Folositi STL:
#include <vector>
#include "Device.h'"
/o
std: :vector<Device*> devices;
e Implementati metoda void addDevice(Device* dev) care adauga un dispozitiv in
sistem.
e Implementati destructorul clasei SmartHome care sa stearga memoria pentru toate

dispozitivele stocate in vector, pentru a evita memory leaks.
3. Operatori si Membri Statici (2p)

e Contor Global: Adaugatiin clasa Device un membru static static int deviceCount
care sa tina evidenta numarului total de dispozitive active.
— Incrementati contorul in constructorul clasei de baza.
— Decrementati contorul in destructorul clasei de baza.
— Afisati numarul total de dispozitive la finalul programului main.

e Supraincircare operator «: Supraincarcati operatorul de insertie in flux (<)
pentru clasa SmartHome.

— Acesta trebuie sa afiseze titlul "Raport Smart Home:" urmat de statusul tuturor
disporzitivelor din casa (iterand prin vector si apeland displayStatus).

— In main, afisarea intregului sistem trebuie si se facd simplu: cout « myHome «
endl;

Facultatea de Automatica si Calculatoare, UPB Laborator Final — Recapitulare POO

Ghid Conceptual Recapitulativ

De ce Destructor Virtual?

Atunci cand stergem un obiect derivat printr-un pointer la clasa de bazi (Device* d = new
SmartLight(...); delete d;), dacd destructorul din baza nu este virtual, se va apela doar
destructorul bazei. Destructorul derivatei nu se executa, ceea ce poate duce la scurgeri de
memorie.

Polimorfismul in STL

Containerele STL (precum vector) stocheaza elemente de acelasi tip. Pentru a stoca o ierar-
hie de clase (SmartLight si Thermostat la un loc), trebuie si stocam pointeri la clasa de
baza (vector<Devicex>). Astfel, la apelul metodelor virtuale, se va decide la runtime care
implementare sa fie executata (Late Binding).

Compilare si verificare

Deoarece aveti mai multe fisiere, trebuie sa le compilati pe toate impreuna pentru a crea
executabilul.

Compilare (listdnd toate fisterele sursa)
gt++ -o final_lab main.cpp Device.cpp SmartLight.cpp Thermostat.cpp SmartHome.cpp

SAU (folosind wildcard - compileazd toate fisierele .cpp din folder)
g++ -o final_lab *.cpp

Rulare
./final_lab

Facultatea de Automatica si Calculatoare, UPB Laborator Final — Recapitulare POO

Finalizare si Incarcare GitHub

Acesta este ultimul laborator. Asigurati-va ca ati parcurs toate cerintele pentru a valida
cunostintele acumulate. Studentii pot obtine pana la 3p bonus daca incarca toate laboratoarele
pana la finalul semestrului.

Pasi pentru incarcarea solutiei finale:

(a) Accesati linkul GitHub Classroom pentru Laboratorul Final:
https://classroom.github.com/a/pAu-bWfK

(b) Clonati repository-ul creat automat.

(¢) Incarcati sursele pe branch-ul main:

git add .
git commit -m "Lab 13 - Smart Home Implementation'
git push origin main

https://classroom.github.com/a/pAu-bWfK

