
 AVR 8-bit Microcontrollers

 AVR315: Using the TWI Module as I2C Master

 APPLICATION NOTE

Introduction

The Two-wire Serial Interface (TWI) is compatible with Philips I2C protocol.
The bus allows simple, robust, and cost effective communication between
integrated circuits in electronics. The strengths of the TWI bus are its
capability to address up to 128 devices using the same bus and arbitration,
and the possibility to have multiple masters on the bus.

A hardware TWI module is included in most of the Atmel® AVR® devices.

This application note describes a TWI master implementation, in the form of
a full-featured driver and contains an example of usage for this driver. The
driver handles transmission based on the both Standard mode (<100kbps)
and Fast mode (<400kbps).

Features

• C-code driver for TWI master
• Compatible with Philips I2C protocol
• Uses the hardware TWI module
• Interrupt driven transmission
• Supports both Standard mode and Fast mode

Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

Table of Contents

Introduction..1

Features.. 1

1. Overview..3
1.1. Two-wire Serial Interface..3
1.2. The AVR TWI Module...4

2. Implementation.. 8
2.1. Functions..8

3. Summary... 12

4. Revision History...13

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

2

1. Overview
This section provides a short description of the TWI interface in general and the TWI module on the Atmel
megaAVR® 8-bit Microcontroller Family. For more information, refer to the specific device datasheet.

1.1. Two-wire Serial Interface
The Two-wire Serial Interface (TWI) is ideally suited for microcontroller applications. The TWI protocol
allows the systems designer to interconnect up to 128 individually addressable devices using only two bi-
directional bus lines; one for clock (SCL) and one for data (SDA). The only external hardware required to
implement the bus is a single pull-up resistor for each of the TWI bus lines. All devices connected to the
bus have individual addresses, and mechanisms for resolving bus contention are inherent in the TWI
protocol.

Figure 1-1. TWI Bus Interconnection

The TWI bus is a multi-master bus where one or more devices are capable of taking control of the bus,
can be connected. Only Master devices can drive both the SCL and SDA lines, while a Slave device is
only allowed to issue data on the SDA line.

Data transfer is always initiated by a Bus Master device. A high to low transition on the SDA line, while
SCL is high, is defined to be a START condition or a repeated start condition.

Figure 1-2. TWI Address and Data Packet Format

A START condition is always followed by the (unique) 7-bit slave address and then by a Data Direction
bit. The Slave device addressed now acknowledges to the Master by holding SDA low for one clock
cycle. If the Master does not receive any acknowledge the transfer is terminated. Depending of the Data
Direction bit, the Master or Slave now transmits 8-bit of data on the SDA line. The receiving device then
acknowledges the data. Multiple bytes can be transferred in one direction before a repeated START or

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

3

STOP condition is issued by the Master. The transfer is terminated when the Master issues a STOP
condition. A STOP condition is defined by a low to high transition on the SDA line while the SCL is high.

If a Slave device cannot handle incoming data until it has performed some other function, it can hold SCL
low to force the Master into a wait-state.

All data packets transmitted on the TWI bus are 9 bits, consisting of one data byte and an acknowledge
bit. During a data transfer, the master generates the clock and the START and STOP conditions, while the
receiver is responsible for acknowledging the reception. An Acknowledge (ACK) is signaled by the
receiver pulling the SDA line low during the ninth SCL cycle. If the receiver leaves the SDA line high, a
NACK is signaled.

1.2. The AVR TWI Module

The TWI module consists of several sub-modules, as shown in following figure. All registers drawn in a
thick line are accessible through the AVR data bus.

Figure 1-3. Overview of the TWI Module in the AVR Devices

TW
I U

ni
t

Address Register
(TW AR)

Address Match Unit

Address Comparator

Control Unit

Control Register
(TWCR)

Status Register
(TWSR)

State Machine and
Status control

SCL

Sle w-r ate
Control

Spik e
Filter

SD A

Sle w-r ate
Control

Spik e
Filter

Bit Rate Gener ator

Bit Rate Register
(TWBR)

Prescaler

Bus Interf ace Unit

ST AR T / ST OP
Control

Arbitration detection Ack

Spik e Suppression

Address/Data Shift
Register (TWDR)

1.2.1. Control Unit

The AVR TWI module can operate in both Master and Slave mode. The mode of operation is
distinguished by the TWI status codes in the TWI Status Register (TWSR) and by the use of certain bits
in the TWI Control Register (TWCR).

A set of predefined status codes covers the various states the TWI can be present in when a TWI event
occurs. The status codes are divided in Master and Slave codes and further in receive and transmit
related codes. Status codes for Bus Error and Idle also exist.

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

4

The TWI module operates as a state machine and is event driven. If a START CONDITION is followed by
a TWI address that matches the address in the Slave’s TWI Address Register (TWAR) the TWINT flag is
set. This results in the execution of the corresponding interrupt (if Global Interrupt and TWI interrupts are
enabled). The firmware of the Slave responds by reading the status code in TWSR and will respond
accordingly. All TWI events will set the TWINT flag, and the firmware must respond based on the status in
TWSR.

As long as the TWINT Flag is set, the SCL line is held low. This allows the application software to
complete its tasks before allowing the TWI transmission to continue.

The TWINT Flag is set :
• After the TWI has transmitted a START/REPEATED START condition
• After the TWI has transmitted SLA+R/W
• After the TWI has transmitted an address byte
• After the TWI has lost arbitration
• After the TWI has been addressed by own Slave address or general call
• After the TWI has received a data byte
• After a STOP or REPEATED START has been received while still addressed as a Slave
• When a bus error has occurred due to an illegal START or STOP condition

1.2.2. Bit Rate Generator
The Bite Rate Generator unit controls the period of SCL when operating in a Master mode. The SCL
period is controlled by settings in the TWI Bit Rate Register (TWBR) and the Prescaler bits in the TWI
Status Register (TWSR). Slave operation does not depend on Bit Rate or Prescaler settings, but the CPU
clock frequency in the Slave must be at least 16 times higher than the SCL frequency. Note that Slaves
may prolong the SCL low period, thereby reducing the average TWI bus clock frequency. The SCL
frequency is generated according to the following equation.������������ = ��� ��������������16 + 2 ���� − 4����

• TWBR = Value of the TWI Bit Rate Register
• TWPS = Value of the prescaler bits in the TWI Status Register

TWPS is located in TWISR which is the same register as the TWI Status bits. TWPS should therefore
always be set to 0 to simplify the handling of the TWI Status bits. Use TWBR to achieve the required
speed on the SCL. The following table shows a selection of pre calculated TWBR values based on CPU
and SCL frequencies.

Table 1-1. CPU and SCL Frequencies versus Bit Rate Generator Register Settings

CPU clock frequency [MHz] TWBR TWPS SCL frequency [kHz]

16 12 0 400

16 72 0 100

14.4 10 0 400

14.4 64 0 100

12 7 0 400

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

5

CPU clock frequency [MHz] TWBR TWPS SCL frequency [kHz]

12 52 0 100

8 2 0 400

8 32 0 100

4 12 0 100

3.6 10 0 100

2 2 0 100

2 12 0 50

1 2 0 50

1.2.3. SCL and SDA Pins

Both TWI lines (SDA and SCL) are bi-directional, therefore outputs connected to the TWI bus must be of
an open-drain or an open-collector type. Each line must be connected to the supply voltage via a pull-up
resistor. A line is then logic high when none of the connected devices drives the line, and logic low if one
or more drives the line low.

The output drivers contain a slew-rate limiter. The input stages contain a spike suppression unit removing
spikes shorter than 50ns. Note that the internal pull-ups in the AVR pads can be enabled by setting the
PORT bits corresponding to the SCL and SDA pins, as explained in the I/O Port section. In some
systems, the internal pull-ups can eliminate the need for external resistors.

The following figure shows how to connect the TWI units to the TWI bus. The value of Rp depends on
VCC and the bus capacitance, typically 4.7k.
Figure 1-4. TWI Connection

1.2.4. Address Match Unit

The Address Match unit is only used in slave mode, and checks if the received address bytes match the
7-bit address in the TWI Address Register (TWAR). Upon an address match, the Control Unit is informed,
allowing correct action to be taken. The TWI may or may not acknowledge its address, depending on
settings in the TWCR.

Although the clock system to the TWI is turned off in all sleep modes, the interface can still acknowledge
its own Slave address or the general call address by using the TWI Bus clock as a clock source. The part

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

6

will then wake up from sleep and the TWI will hold the SCL clock low during the wake up and until the
TWINT Flag is cleared.

1.2.5. Bus Interface Unit
This unit contains the Data and Address Shift Register (TWDR), a START/STOP Controller, and
Arbitration detection hardware. The TWDR contains the address or data bytes to be transmitted, or the
address or data bytes received. In addition it also contains a register containing the (N)ACK bit to be
transmitted or received.

The START/STOP Controller is responsible for generation and detection of START, REPEATED START,
and STOP conditions. The START/STOP controller is able to detect START and STOP conditions even
when the AVR MCU is in one of the sleep modes, enabling the MCU to wake up if addressed by a Master.
If the TWI has initiated a transmission as Master, the Arbitration Detection hardware continuously
monitors the transmission trying to determine if arbitration is in process. If the TWI has lost an arbitration,
the Control Unit is informed. Correct action can then be taken and appropriate status codes generated.

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

7

2. Implementation
The implemented code in this application note is a pure master driver. The TWI modules also support
slave operation. See AVR311: Using the TWI module as I2C slave application note for a sample of a slave
driver. The master and slave drivers could be merged to one combined master and slave driver, but this is
not in the scope of this application note.

The master driver C-code consists of three files.
1. TWI_Master.c
2. TWI_Master.h
3. Main.c

There is an example on how to use the driver in the main.c file. The TWI_Master.h file must be
included in the main application and contains all function declarations, a define of the Bit Rate Register
(TWBR), and defines for all TWI status codes. The TWBR must be set according to the description earlier
in this application note. The TWI status code defines can be used to evaluate error messages and to take
appropriate actions. The TWI_Master.c file contains all the driver functions.

2.1. Functions
The driver consists of the TWI Interrupt Service Routine and six functions. All functions are available for
use outside the driver file scope. Some of them are however also used internally by the driver itself. All
functions in the driver are listed in the following table.

Table 2-1.  Description of functions in the TWI Master driver

Function name Description

void TWI_Master_Initialise() Call this function to set up the TWI master to its initial
standby state.

Remember to enable interrupts from the main application
after initializing the TWI.

void
TWI_Start_Transceiver_with_Data
(unsigned char *msg, unsigned
char msgSize)

Call this function to send a prepared message. The first
byte must contain the slave address and the read/write
bit. Consecutive bytes contain the data to be sent, or
empty locations for data to be read from the slave. Also
include how many bytes that should be sent/read
including the address byte. The function will hold
execution (loop) until the TWI_ISR has completed with
the previous operation, then initialize the next operation
and return.

void TWI_Start_Transceiver() Call this function to resend the last message. The driver
will reuse the data previously put in the transceiver
buffers. The function will hold execution (loop) until the
TWI_ISR has completed with the previous operation,
then initialize the next operation and return.

unsigned char
TWI_Transceiver_Busy()

Call this function to test if the TWI_ISR is busy
transmitting.

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

8

Function name Description

unsigned char
TWI_Get_State_Info()

Call this function to fetch the state information of the
previous operation. The function will hold execution
(loop) until the TWI_ISR has completed with the previous
operation. If there was an error, then the function will
return the TWIState code.

unsigned char
TWI_Get_Data_From_Transceiver
(unsigned char *message,
unsigned char messageSize)

Call this function to read out the requested data from the
TWI transceiver buffer. I.e. first call
TWI_Start_Transceiver to send a request for data
to the slave. Then Run this function to collect the data
when they have arrived. Include a pointer to where to
place the data and the number of bytes requested
(including the address field) in the function call. The
function will hold execution (loop) until the TWI_ISR has
completed with the previous operation, before reading
out the data and returning. If there was an error in the
previous transmission the function will return the TWI
error code.

ISR(TWI_vect)(For GCC)/
__interrupt void TWI_ISR(void)
(For IAR)

This function is the Interrupt Service Routine (ISR), and
automatically called when the TWI interrupt is triggered;
that is whenever a TWI event has occurred. This function
should not be called directly from the main application.

The following table consists the description of the driver register byte containing status information from
the last transceiver operation. Available as bit fields within a byte.

Table 2-2.  Description of the Driver Status Register Byte

TWI_statusReg Description

TWI_statusReg.lastTransOK Set to 1 when an operation has completed successfully.

The following figure shows a flowchart of the process of sending and requesting data over the TWI
interface through the drivers. Data is passed through parameters to the functions while the status of an
operation is available trough a global status variable.

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

9

Figure 2-1. Calling the TWI Driver from the Application

Return

Send data

Prepare transmission
buffer with slave address,
R/W bit and data to send

Call Transeiver with
pointer to buffer and

number of bytes
to send

Do something else
while waiting for TWI

transmission to
complete

When complete, check
statusReg to se if

transmission went ok
or if special actions

must be taken

Prepare transmission
buffer with slave address

and R/W bit .

Call Transeiver with
pointer to buffer and

number of bytes
to request

Do something else
while waiting for TWI

reception to
complete

Call GetData to check if
reception went ok,

and read out received
data, or if special

actions must be taken

Request data

Return

The following figure shows a flowchart which contains the description of TWI Driver itself . The
Transceiver function copies the complete message into the transmission buffer. Then it enables the TWI
interrupt to initiate the transmission. The Interrupt then takes care of the complete transmission and
disables itself when the transmission is completed, or if an error state occurs. This way the driver can poll
the interrupt enable bit to check if a transmission is ongoing. The main application is only allowed to
access the global transceiver variables while the TWI transceiver is not busy. The interrupt stores
eventual error states in a variable that is available for the main application through a function call.

Figure 2-2. TWI Driver Functions

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

10

In the following flowchart shows a more detailed description of the actions for each event/state in the TWI
Interrupt Service Routine. The left column contains the different states/events the TWI state machine can
be in when entering the Interrupt. A case switch executes the different actions dependent on the cause of
the interrupt call.

Figure 2-3. TWI Interrupt Service Routine

TWI Interrupt

START has been
transmitted

Repeated START has
been transmitted

Return

buffer pointer at
the end?

Reset bufferPointer

Disable TWI interrupt,
initalise a STOP condition

and clear interrupt flag

Clear TWI interrupt flag

Copy data from current
buffer position to data

register. Post incr pointer.

No

Yes

SLA+W has been
tramsmitted and
ACK received

Data byte has been
tramsmitted and
ACK received

SLA+R has been
tramsmitted and
ACK received

Data byte has been
received and

ACK tramsmitted

buffer
pointer position at

byte before the
end?

Intialise a NACK after
reception and clear
TWI interrupt flag

Intialise a ACK after
reception and clear
TWI interrupt flag

Copy from data register to
current buffer position.

Post incr pointer.

Yes No

Data byte has been
received and

NACK tramsmitted

Disable TWI interrupt,
initalise a STOP condition

and clear interrupt flag

Arbitration lost

Initalise a RESTART
condition and clear
TWI interrupt flag

SLA+W/R has been
tramsmitted and
NACK received

Data byte has been
tramsmitted and
NACK received

Bus error due to an illegal
START or STOP condition

Store TWI state information

Disable TWI interrupt

Error States

Set Success bit
in StatusReg

Set Success bit
in StatusReg

Copy from data register to
current buffer position.

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

11

3. Summary
This application note describes the steps to configure the TWI module as a Master and provides an
example driver software to implement the module. The firmware for Master Driver is available as a
download along with this application note.

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

12

4. Revision History
Doc Rev. Date Comments

2564D 03/2016 The firmware is ported to Atmel Studio 7

2564C 01/2010 Updated table for bit rates

2564B 09/2007 Removed text about TWBR needs to be higher than 10

2564A 04/2006 Initial document release.

Atmel AVR315: Using the TWI Module as I2C Master [APPLICATION NOTE]
Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

13

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA T: (+1)(408) 441.0311 F: (+1)(408) 436.4200 | www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-2564D-Using-the-TWI-Module-as-I2C-Master_AVR315_Application Note-03/2016

Atmel®, Atmel logo and combinations thereof, Enabling Unlimited Possibilities®, AVR®, megaAVR®, and others are registered trademarks or trademarks of Atmel
Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND
CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS AND PROFITS, BUSINESS
INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this
document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to
update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive
applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any
applications where the failure of such products would reasonably be expected to result in significant personal injury or death (“Safety-Critical Applications”) without
an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the
operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments
unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically
designated by Atmel as automotive-grade.

https://www.facebook.com/AtmelCorporation
https://twitter.com/Atmel
http://www.linkedin.com/company/atmel-corporation
https://plus.google.com/106109247591403112418/posts
http://www.youtube.com/user/AtmelCorporation
http://en.wikipedia.org/wiki/Atmel
http://www.atmel.com

	Introduction
	Features
	Table of Contents
	1. Overview
	1.1. Two-wire Serial Interface
	1.2. The AVR TWI Module
	1.2.1. Control Unit
	1.2.2. Bit Rate Generator
	1.2.3. SCL and SDA Pins
	1.2.4. Address Match Unit
	1.2.5. Bus Interface Unit

	2. Implementation
	2.1. Functions

	3. Summary
	4. Revision History

