December 1983 Revised January 2005

FAIRCHILD

SEMICONDUCTOR

MM74HCT08 Quad 2-Input AND Gate

General Description

Ordering Code:

The MM74HCT08 is a logic function fabricated by using advanced silicon-gate CMOS technology which provides the inherent benefits of CMOS—low quiescent power and wide power supply range. This device is input and output characteristic and pinout compatible with standard 74LS logic families. All inputs are protected from static discharge damage by internal diodes to V_{CC} and ground.

MM74HCT devices are intended to interface between TTL and NMOS components and standard CMOS devices. These parts are also plug-in replacements for LS-TTL devices and can be used to reduce power consumption in existing designs.

Features

- TTL, LS pin-out and threshold compatible
- Fast switching: t_{PLH}, t_{PHL} = 12 ns (typ)
- Low power: 10 µW at DC
- High fan-out, 10 LS-TTL loads

Order Number	Package Number	Package Description				
MM74HCT08M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HCT08MX_NL	M14A	Pb-Free 14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow				
MM74HCT08SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide				
MM74HCT08MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HCT08MTCX_NL	MTC14	Pb-Free 14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide				
MM74HCT08N	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide				
⋴᠆₽∞−₽	کر کہ	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				

© 2005 Fairchild Semiconductor Corporation DS005754

Absolute Maximum Ratings(Note 1) (Note 2)

Supply Voltage (V _{CC})	-0.5 to +7.0V
DC Input Voltage (V _{IN})	-1.5 to V _{CC} $+1.5$ V
DC Output Voltage (V _{OUT})	–0.5 to V _{CC} +0.5V
Clamp Diode Current (I _{IK} , I _{OK})	±20 mA
DC Output Current, per pin (I _{OUT})	±25 mA
DC V_{CC} or GND Current, per pin (I _{CC})	±50 mA
Storage Temperature Range (T _{STG})	-65°C to +150°C
Power Dissipation (P _D)	
(Note 3)	600 mW
S.O. Package only	500 mW
Lead Temperature (T _L)	
(Soldering 10 seconds)	260°C

Recommended Operating Conditions

	Min	Max	Units
Supply Voltage (V _{CC})	4.5	5.5	V
DC Input or Output Voltage			
(V _{IN} , V _{OUT})	0	V _{CC}	V
Operating Temperature Range (T _A)	-40	+85	°C
Input Rise or Fall Times			
(t _r , t _f)		500	ns
Note 1: Absolute Maximum Ratings are those age to the device may occur.	values be	yond whic	h dam-
Note 2: Unless otherwise specified all voltages	are refere	nced to gr	ound.

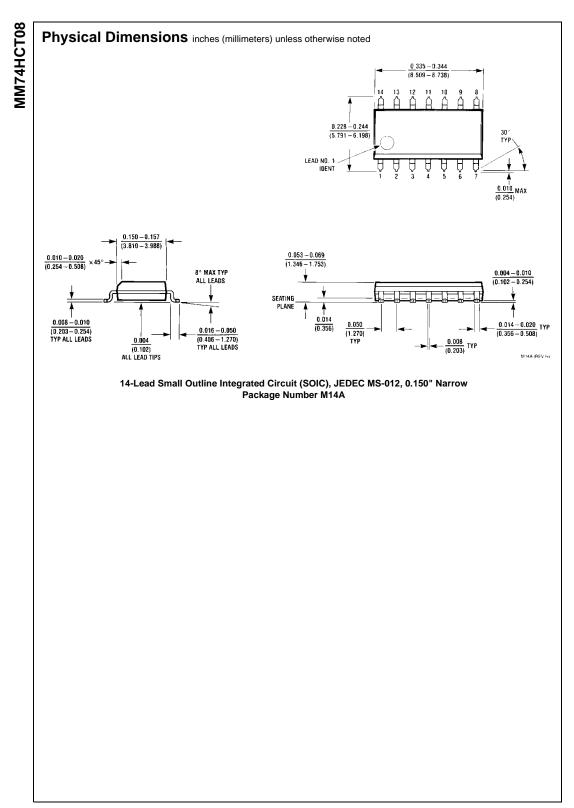
Note 3: Power Dissipation temperature derating — plastic "N" package -12 mW/°C from 55° C to 85° C.

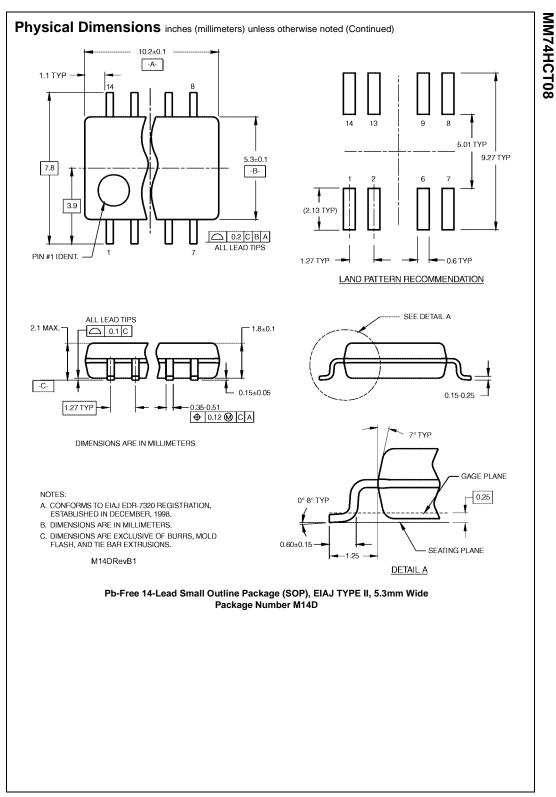
DC Electrical Characteristics

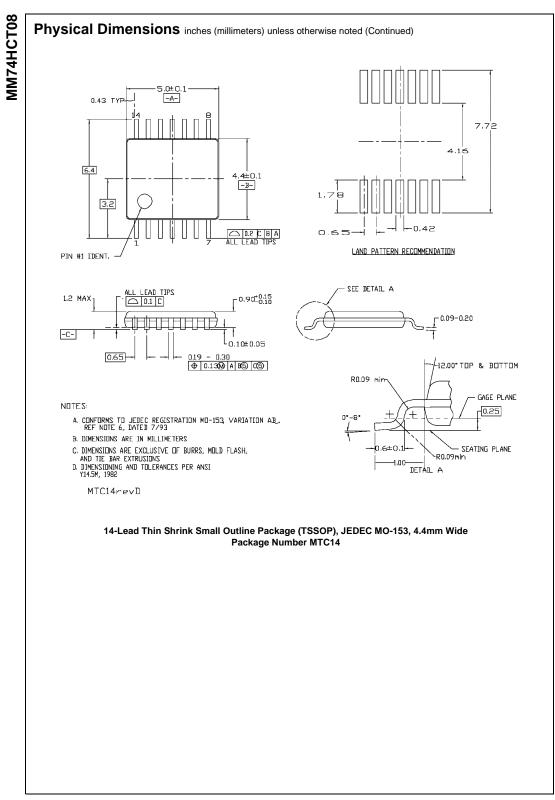
$V_{CC} = 5V \pm 10\%$ (unless otherwise specified)

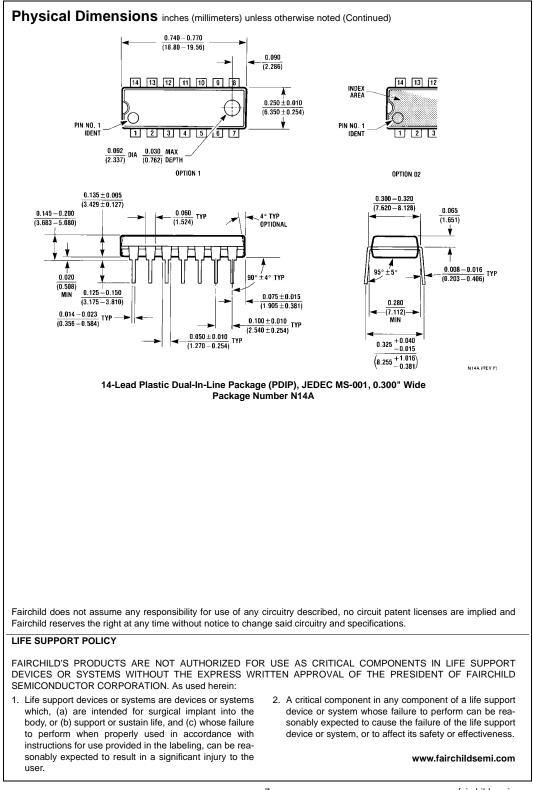
Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40$ to $85^{\circ}C$	$T_A = -55$ to $125^{\circ}C$	Units
Symbol			Тур		Guaranteed Limits		Units
VIH	Minimum HIGH Level			2.0	2.0	2.0	V
	Input Voltage						
V _{IL}	Maximum LOW Level			0.8	0.8	0.8	V
	Input Voltage						
V _{OH}	Minimum HIGH Level	$V_{IN} = V_{IH}$ or V_{IL}					
	Output Voltage	$ I_{OUT} = 20 \ \mu A$	V _{CC}	V _{CC} - 0.1	V _{CC} - 0.1	V _{CC} - 0.1	V
		$ I_{OUT} = 4.0 \text{ mA}, V_{CC} = 4.5 \text{V}$	4.2	3.98	3.84	3.7	V
		$ I_{OUT} = 4.8$ mA, $V_{CC} = 5.5$ V	5.2	4.98	4.84	4.7	V
V _{OL}	Maximum LOW Level	$V_{IN} = V_{IH}$					
	Voltage	$ I_{OUT} = 20 \ \mu A$	0	0.1	0.1	0.1	V
		$ I_{OUT} = 4.0$ mA, $V_{CC} = 4.5$ V	0.2	0.26	0.33	0.4	V
		$ I_{OUT} = 4.8$ mA, $V_{CC} = 5.5$ V	0.2	0.26	0.33	0.4	V
I _{IN}	Maximum Input	$V_{IN} = V_{CC}$ or GND, V_{IH} or V_{IL}		±0.1	±1.0	±1.0	μA
	Current						
I _{CC}	Maximum Quiescent	$V_{IN} = V_{CC}$ or GND		2.0	20	40	μA
	Supply Current	$I_{OUT} = 0 \ \mu A$					
		V _{IN} = 2.4V or 0.5V (Note 4)		1.2	1.4	1.5	mA

Note 4: This is measured per input with all other inputs held at V_{CC} or ground.


AC Elec	ctrical Characteristics				
$V_{CC} = 5.0V, t$	$r_r = t_f = 6 \text{ ns}, C_L = 15 \text{ pF}, T_A = 25^{\circ}\text{C}$				
Symbol	Parameter	Conditions	Тур	Guaranteed Limit	Units
PLH, ^t PHL	Maximum Propagation Delay		9	15	ns


AC Electrical Characteristics


 $V_{CC} = 5.0V \pm 10\%, t_r = t_f = 6 \text{ ns}, C_L = 50 \text{ pF}$


Symbol	Parameter	Conditions	T _A = 25°C		$T_A = -40 \text{ to } 85^{\circ}\text{C}$ $T_A = -55 \text{ to } 125^{\circ}\text{C}$		Units
Symbol	Falameter		Тур		Guaranteed L	imits	Units
t _{PLH} , t _{PHL}	Maximum Propagation Delay		11	18	23	27	ns
t _{THL} , t _{TLH}	Maximum Output Rise & Fall Time		7	15	19	22	ns
C _{PD}	Power Dissipation Capacitance	(Note 5)	38				pF
CIN	Input Capacitance		5	10	10	10	pF

Note 5: C_{PD} determines the no load dynamic power consumption. $P_D = C_{PD} V_{CC} 2 f + I_{CC} V_{CC}$ and the no load dynamic current consumption, $I_S = C_{PD} V_{CC} f + I_{CC}$.

MM74HCT08 Quad 2-Input AND Gate

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.