
PROIECTAREA CU MICROPROCESOARE

Facultatea de Automatică și Calculatoare
Universitatea Politehnica București

ARHITECTURA X86

Contents

¨ Overview
¨ Hardware architecture
¨ Software architecture

Overview

¨ The name x86 refers to instruction set which is used
in Intel’s 8086 CPU

¨ This name is used in processors from Intel, AMD,
VIA, and other processors that compatible with the
instruction set

¨ Modern processors have many addition to the
original x86 but still fully backward compatible with
it.

Chronology (only Intel)
¨ 1978: 8086, 8088

¤ 16-bit CPU with 20-bit address
¨ 1982: 80186, 80188
¨ 1982: 80286

¤ 16-bit CPU with 24-bit address
¨ 1985: i386 (80386)

¤ 32-bit CPU with 32-bit address, renamed to IA-32
¨ 1989: i486

¤ Pipelining with integrated FPU(floating point unit)

Chronology (cont.)
¨ 1993: Pentium, Pentium MMX

¤ 64-bit data bus, superscalar (2 ALUs)
¨ 1995: Pentium Pro

¤ 36-bit address bus (Physical Address Extension, PAE), RISC core
¨ 1997: Pentium II, Pentium III

¤ SSE
¨ 2000: Pentium IV

¤ Deeply pipelining, SSE2, Hyperthreading
¨ 2003: Pentium M

Chronology (cont.)
¨ 2003: Athlon64 (from AMD)

¤ First 64-bit CPU in x86 family
¨ 2004: Pentium 4 Prescott

¤ Very deep pipeline (20 stages), SSE3, 64-bit
¨ 2006: Core 2

¤ Multicore, SSE4
¨ 2008: Atom

¤ Deep pipeline, very low power

Chronology (cont.)

¨ 2008: Core i7
¨ 2009: Core i5
¨ 2010: Core i3
¨ 2017: Core i9

Basic properties

¨ CISC design
¨ Primarily two-address with limitation
¨ Little endian
¨ Allow unaligned memory-address access for 16 and

32 bits
¨ Instruction set is mostly inherited from the previous

generation Intel’s CPU (8085)

Current implementation

¨ Since Pentium Pro, the core unit is RISC
¨ An extra decoding unit asynchronously splits most

x86 instructions into smaller pieces, which then are
executed by many execution units

¨ The extra decoding unit operates like an emulator

Operation mode

¨ Many extensions have been introduced since the
first generation of x86

¨ The original x86 architecture has many limitations
and cannot support modern architecture such as
protection and virtual memory

¨ How to support new requirements while maintain
backward compatibility?

Operation mode

¨ x86 CPUs have many operation modes
¤ Real mode
¤ 16-bit Protected mode
¤ 32-bit Protected mode

n Virtual-8086 mode
¤ Long mode (64-bit Protected mode)

¨ Different modes have different limitations
¨ After power up, CPU operates in Real mode.
¨ Switching between modes occurs by software (OS)

Real mode

¨ Addressing is fully compatible with the original x86
CPU

¨ Can access memory up to 1MB
¨ Uses segmentation
¨ Although the memory reference is limited to the

original 16-bit CPU, data processing can utilize 32-
bit instructions

Segmentation in Real mode
¨ The original x86 is 16 bits which has 16-bit registers.
¨ 64 kB memory was nearly not enough
¨ To extend memory size, Intel decided to use two 16-

bit number to point to a physical address
¨ That two 16-bit number is referred to in the form of
Segment:Offset

¨ The combination of segment and offset generates 20-
bit address (1 MB)

Calculating address from Segment:Offset

¨ The segment must be stored in one of the “segment”
registers
¤ CS, DS, SS, ES

¨ Given a 16-bit selector and a 16-bit offset, the 20-bit address
is computed as follows
¤ Multiply the selector by 16

n This simply transforms XXXX into XXXX0 (in base-16)
¤ Add the offset

Example

¨ Given the segment and offset as 10DE:12A3, what is
the physical address?
¤ Physical = Segment * 1610 + offset
¤ = 10DE0 + 12A3
¤ Physical = 12083

Example

¨ Consider the byte at address 13DFE with the
segment value 10DE. What is its offset?

¤ 13DDE = 10DE * 1610 + offset
¤ offset = 13DFE - 10DE0
¤ offset = 301E (a 16-bit quantity)

Code, Data, Stack

¨ Although we’ll discuss these at length later, let’s just say
right for now that the address space has three regions

¨ A program constantly references all three regions
¨ Therefore, the program constantly references bytes in three

different segments
¤ For now let’s assume that each region is fully contained

in a single segment, which is in fact not always the case
¨ CS: points to the beginning of the code segment
¨ DS: points to the beginning of the data segment
¨ SS: points to the beginning of the stack segment

code

data

stack

address space

The trouble with segments

¨ It is well-known that programming with segmented architectures is
really a pain
¤ You constantly have to make sure segment registers are set up correctly

¨ What happens if you have data/code that’s more than 64K?
¤ You must then switch back and forth between selector values, which

can be really awkward
¨ Something that can cause complexity also is that two different

(selector, offset) pairs can reference the same address
¤ Example: (a,b) and (a-1, b+16)
¤ Concrete example: A000:5677 and A111:4567

Protected mode
¨ Introducing the term “logical address space” to x86
¨ Each position of memory has two address types:

¤ Logical address – seen and used by program (also
programmer)

¤ Physical address – The actual address generated by memory
management unit (embedded within the CPU) from a given
virtual address

¨ Size of logical space can be different from those of
physical space

Logical -> Physical address

Difference of 286 and 386 address translation

¨ 286
Logical
Address Segmentation Physical

Address

Logical
Address Segmentation Paging Physical

Address

Linear
Address

¨ 386

Virtual memory

¨ Paging in i386 introducing the world of virtual
memory to x86

¨ A memory page can be absent from the physical
memory

¨ If program refers to an absent page, paging unit
generates a special interrupt (page fault) then OS can
manage to fill the page with the required data

Virtual and physical space

Process privilege

¨ In protected mode, a process (or a task) has
privilege (aka. Priority) level.

¨ There are 4 privilege levels (or rings) numbers from
0 to 3 (ring 0 is the highest privilege and ring 3 is the
lowest)

¨ Usually, OS runs in ring 0 and all user applications
operate in ring 3

Privileged ring

User applications cannot:
¨ Segment arithmetic
¨ Privileged instructions
¨ Direct hardware access
¨ Writing to a code segment
¨ Executing data
¨ Overlapping segments
¨ Use of BIOS functions, due to the BIOS interrupts being

reserved
¨ However, most legacy programs violate these rules!!!! To

solve this problem, Virtual-8086 was introduced in i386

Virtual 8086 mode

¨ As the segmentation in protected mode is far different
from that in real mode, all legacy applications cannot run
in protected mode.

¨ At the time of designing 80386, these old programs were
still popular though the protected mode in 80286 had
been around for sometime.

¨ Virtual-8086 mode is actually a sub-operation in 32-bit
protected mode

Difference between protected and virtual-8086 modes

¨ Virtual-8086 mode is activated per process not for the
whole system. Therefore, CPU is still in 32-bit protected
mode and Virtual-8086 application is running in ring 3.

¨ In Virtual-8086, CPU uses real-mode segmentation instead
of normal protected-mode segmentation

¨ Paging is still active so virtual memory and protection still
exist.

¨ I/O operation is controlled by I/O permission map to
allow/disallow the I/O change

Long mode
¨ Normally, applications cannot use 64-bit features such as 64-bit

registers. Long mode enables these features.
¨ There is no virtual-8086 and segmentation in Long mode.

However, paging is still active.
¨ Processor should enter 32-bit protected mode before starting

Long mode.
¨ In Long mode, a task can be classified to either of two sub-

mode:
¤ 64-bit mode – For new 64-bit applications (old applications require re-

compilation)
¤ Compatibility mode – For 32-bit applications

x86 Registers
¨ The original 8086 has 14 registers. All of them are 16-bit

wide.
¤ 4 General purpose register (GPR): AX, BX, CX, DX
¤ 2 Index register: SI, DI
¤ 2 Pointer register: BP, SP
¤ 4 Segment register: CS, DS, SS, ES
¤ Flag
¤ Instruction Pointer

¨ Each GPR can be accessed as two separate bytes (i.e., BX’s
high byte can be accessed as BH and low byte as BL)

x86 Registers (cont.)
¨ In 32-bit platforms, all GPR, flag, index, and pointer

registers are expanded to 32-bit. (Except the
segment registers)

¨ All 32-bit registers are represented by prefixing “E”
to the 16-bit register name (e.g., to access 32-bit
AX, we use EAX)

¨ Two new segment registers (FS and GS) were added
(They are still 16-bit)

x86 Registers (cont.)

¨ In 64-bit platforms (also in 64-bit Long mode), all
32-bit registers are expanded to 64-bit in a similar
way that 32-bit expansion did before but with the
prefix “R” (e.g., AX become RAX)

¨ 8 additional general registers were added (R8, R9, ..,
R15)

Floating-point Registers

¨ Floating-point unit has its own register groups
separate from all operation of the other units
¤ 8 80-bit floating-point registers: all are named ST
¤ 3 16-bit word registers: Control word, Status word, Tag word

¨ Operation on these registers as well as the floating
point functions require another set of instructions
because this unit was originally a separate processor

Special registers

¨ Apart from all registers mentioned before, x86 also
has various special/miscellaneous registers. They are
mainly used by the OS
¤ 5 Control registers: CR0 through 4
¤ 6 Debug registers: DR0 through 3, plus 6 and 7
¤ 4 Test registers: TR7 through 7
¤ Descriptor registers: GDTR, LDTR, IDTR
¤ Test register: TR

x86 Registers

MMX
¨ MMX is a SIMD instruction set
¨ MMX adds 8 new “registers” named MM0 to MM7. They are

not actual registers. The are just aliases to the existing floating-
point registers
¤ Change MMx also change ST

¨ Each of MM registers is 64-bit. Therefore, the highest 16-bit in
80-bit floating point register is unused and filled with all 1.

¨ Each MM register can contain one 64-bit integer, two 32-bit
integer, four 16-bit integer, or eight 8-bit integer.

¨ A MMX instruction calculates the results of these packed data
simultaneously

3DNow

¨ Introduced by AMD in 1997
¨ Very similar architecture as MMX
¨ Each 64-bit register, can contain two single-precision

floating point data. Hence, the operations can be
performed only with real numbers

Streaming SIMD Extensions (SSE)

¨ SSE discarded all legacy connections to the FPU registers
¨ 8 new actual registers were added named XMM0 – XMM7

(in AMD64 the number of register has been increased from
8 to 16)

¨ Like 3DNow, SSE supports only floating-point operations
¨ Each XMM has 128 bits.

¤ SSE1 each register can pack four single-precision floating-point data
¤ SSE2 and later each register can pack four single-precision or two

double-precision floating-point data
¨ SSE3 and SSE4 have same register structure with additional

instructions

Physical Address Extension (PAE)

¨ Valid only in 32-bit protected mode
¨ The size of physical address is extended by 4 bit.

Therefore, we can have maximum 64GB of physical
memory

¨ The extension occurs in paging unit; hence, logical
address still has 32 bits
¤ Means that the size of memory that a program can

access at a time is still 4GB

Intel processor roadmap

Tick-Tock Model (now defunct)

41

Knights
Ferry

Knights
Corner

Knights
Landing

Nehalem Sandy Bridge Haswell

45nm 32nm 22nm

Scalable Performance
Energy Efficient
Microarchitecture

Highly Parallel
Energy Efficient
Architecture

14nm

NetBurst
¨ First released in 2000
¨ Hyper Pipelined Technology

¤ 20-stage pipeline (compared to 10 in PIII) except for Prescott
¤ Prescott has 31 stages!!!
¤ Introducing of Hyper threading
¤ Deep pipeline has high penalty in branching

¨ Rapid Execution Engine
¤ ALU run at twice speed of other units
¤ Speedup integer operations
¤ Difficult to optimize operations among units

¨ Execution Trace Cache
¤ When execute a previously visited instruction, CPU can use the previously decoded micro-

ops instead of fetching and decoding the instruction again

Core Architecture
¨ First released in 2006
¨ Redesigned from ground up with the philosophy of Pentium M
¨ Only 14-stage pipeline but with wider execution unit.
¨ Micro-op Fusion

¤ Combine two x86 instructions together and execute them simultaneously
¨ Multiple core CPUS with linked L1 cache and shared L2 cache
¨ Lower power consumption

¤ 20% more performance for Merom at the same power level (compared to Dual
Core)

¤ 40% more performance for Conroe at 40% less power (compared to Pentium D)
¤ 80% more performance for Woodcrest at 35% less power (compared to the

original dual-core Xeon)

Nehalem
¨ Released 2008
¨ 2, 4, or 8 cores

¤ 731 million transistors for the quad core variant
¨ 45 nm manufacturing process
¨ Integrated memory controller supporting DDR3 RAM and between 1 and 6 memory channels
¨ Integrated graphics processor (IGP) located off-die, but in the same CPU package
¨ A new point-to-point processor interconnect, the Intel QuickPath Interconnect, replacing the

legacy front side bus
¨ Simultaneous multithreading, which enables two threads per core.
¨ Native (monolithic, i.e. all processor cores on a single die) quad and octo (8) core processors
¨ Linked L1 and L2 cache. Shared 8MB L3 cache
¨ 33% more in-flight micro-ops than Conroe
¨ 2nd level branch predictor and 2nd level Translation Lookaside Buffer
¨ Modular blocks of components such as cores that can be added and subtracted for varying

market segments

Sandy Bridge
¨ Released in 2010
¨ 4 GHz clock speed.
¨ 4 to 8 out-of-order cores.
¨ Without SSE: 8 DP GFLOPS/core (2 DP FP/clock), 32-64 DP GFLOPS/processor.
¨ With SSE: 28 DP GFLOPS/core (7 DP FP/clock), 112-224 DP GFLOPS/processor.
¨ 32 KB L1 cache/core, (3 clocks).
¨ 512 KB L2 cache/core, (9 clocks).
¨ 2-3 MB L3 cache/core (8-24 MB total) (33 clocks), most likely pooled and dynamically allocated

among the cores.
¨ 64 bytes cache line width.
¨ 256 bytes/cycle Ring bus bandwidth. The ring bus connects the cores.
¨ 0-512 MB GDDR / fast DRAM.
¨ 64 GB/s GDDR / fast DRAM memory bandwidth.
¨ 17 GB/s memory bandwidth per QuickPath link with 50 ns latency.

Atom

¨ Aims for ultra-low power mobile
devices.

¨ No instruction re-ordering
¨ No instruction fusing
¨ Simpler micro-ops decoding than

Nehalem (Less performance but
smaller unit)

¨ Single core with hyper-threading

Haswell
¨ Introduced 2013
¨ 14 stage pipeline
¨ 4 cores, SMT machine
¨ In order issue, Out of Order execution, In order commit.
¨ Wider data paths and extra Store AGU to provide more bandwidth in AVX2

computations
¨ LLC/Ring is the point of coherence and distributed arbitration of requests.
¨ Intel TSX

¤ Added support for Restricted Transaction Memory
¨ Integrated Graphics and Improved Power Management

¤ Power Efficiency is a huge emphasis

Skylake
¨ 6th generation Core uArch
¨ Released 2015
¨ Improved performance, particularly on mobile
¨ Better graphics support
¨ Power efficiency (4.5W at the low end)
¨ Better OS support (especially Win 10)

Organization of 8086
AH AL
BH BL
CH CL
DH DL

SP
BP
SI
DI

ALU

Flag register

Execution Unit
(EU)

EU
control

S

CS
DS
SS
ES

ALU Data bus
(16 bits)

Address bus (20 bits)

Instruction Queue

Bus
control

External bus

IP

Data bus
(16 bits)

Bus Interface Unit (BIU)

General purpose
register

Segment
register

General Purpose Registers
15 8 7 0

AX

BX

CX

DX

AH AL

BH BL

CH CL

DH DL

Accumulator

Base

Counter

Data

SP

BP

SI

DI

Data Group

Pointer and
Index Group

Stack Pointer

Base Pointer

Source Index

Destination Index

3-51

Arithmetic Logic Unit (ALU)
n bits n bits

A B

Y

F
Carry

Y= 0 ?
A > B ?

F Y

0 0 0 A + B
0 0 1 A - B
0 1 0 A - 1
0 1 1 A and B
1 0 0 A or B
1 0 1 notA
• • • • • •

Ø Signal F controls which function will be conducted by ALU.
Ø Signal F is generated according to the current instruction.
Ø Basic arithmetic operations: addition, subtraction, etc.
Ø Basic logic operations: and, or, xor, shifting, etc.

3-52

Flag Register

¾ NT IOPL OF DF IF TF ZFSF ¾ AF PF CF¾ ¾

015

Ø Control Flags Ø Status Flags
IF: Interrupt enable flag
DF: Direction flag
TF: Trap flag

CF: Carry flag
PF: Parity flag
AF: Auxiliary carry flag
ZF: Zero flag
SF: Sign flag
OF: Overflow flag
NT: Nested task flag
IOPL: Input/output privilege level

q Flag register contains information reflecting the current status of a
microprocessor. It also contains information which controls the operation of the
microprocessor.

Instruction Machine Codes
q Instruction machine codes are binary numbers

Ø For Example:
1 0 0 0 1 0 0 0 1 1 0 0 0 0 1 1 MOV AL, BL

MOV

q Machine code structure
Opcode Operand1

Ø Opcode tells what operation is to be performed.
(EU control logic generates ALU control signals according to Opcode)

Ø Some instructions do not have operands, or have only one operand

Ø Operands tell what data should be used in the operation. Operands can
be addresses telling where to get data (or where to store results)

Register
mode

Mode Operand2

Ø Mode indicates the type of a instruction: Register type, or Memory type

3-54

EU Operation

ALU Data bus
(16 bits)

AH AL
BH BL
CH CL
DH DL

SP
BP
SI
DI

General purpose
register

ALU

Flag register
EU
control instruction

1011000101001010

1. Fetch an instruction from instruction
queue

2. According to the instruction, EU control
logic generates control signals.
(This process is also referred to as instruction
decoding)

3. Depending on the control signal,
EU performs one of the following
operations:
Ø An arithmetic operation
Ø A logic operation
Ø Storing data into a register
Ø Moving data from a register
Ø Changing flag register

Generating Memory Addresses

q How can a 16-bit microprocessor generate 20-bit memory addresses?

Segment
(64K)

0000

+
16-bit register

16-bit register

20-bit memory address

00000

FFFFFLeft shift 4 bits

Intel 80x86 memory address generation 1M memory space

Offset

Segment
address

Offset
Addr1

Addr1 + 0FFFF

Memory Segmentation
q A segment is a 64KB block of memory starting from any 16-byte

boundary
Ø For example: 00000, 00010, 00020, 20000, 8CE90, and E0840 are all valid

segment addresses
Ø The requirement of starting from 16-byte boundary is due to the 4-bit

left shifting
q Segment registers in BIU

CS

SS

DS

ES

Code Segment

Data Segment
Stack Segment

Extra Segment

015

Memory Address Calculation
q Segment addresses must be stored

in segment registers
q Offset is derived from the combination

of pointer registers, the Instruction
Pointer (IP), and immediate values

0000

+
Segment address

Offset

Memory address

q Examples
3 4 8 A 0

4 2 1 4
8 A B 43

CS
IP +

Instruction address

5 0 0 0 0
F F E 0
F F E 05

SS
SP +

Stack address

1 2 3 4 0
0 0 2 2
2 3 6 21

DS
DI +

Data address

Fetching Instructions
q Where to fetch the next instruction?

CS
IP

1 2 3 4
0 0 1 2

1 2 3 5 2

12352 MOV AL, 0

8086 Memory

q Update IP
— After an instruction is fetched, Register IP is updated as follows:

IP = IP + Length of the fetched instruction
— For Example: the length of MOV AL, 0 is 2 bytes. After fetching this instruction,

the IP is updated to 0014

Accessing Data Memory
q There is a number of methods to generate the memory address when

accessing data memory. These methods are referred to as
Addressing Modes

q Examples:
— Direct addressing: MOV AL, [0300H]

1 2 3 4 0
0 3 0 0
2 6 4 01

DS

Memory address

(assume DS=1234H)

— Register indirect addressing: MOV AL, [SI]
1 2 3 4 0

0 3 1 0
2 6 5 01

DS

Memory address

(assume DS=1234H)
(assume SI=0310H)

Reserved Memory Locations

FFFFF
FFFF0

003FF

00000

Reset
instruction
area

Interrupt
pointer
table

Ø Locations from 00000H to 003FFH
are used for the interrupt pointer table

Ø Locations from FFFF0H to FFFFFH
are used for system reset code

q Some memory locations are reserved for special purposes.
Programs should not be loaded in these areas

¾ It has 256 table entries
¾ Each table entry is 4 bytes

256 ´ 4 = 1024 = memory addressing space
From 00000H to 003FFH

