
1

Clocks, Counters & Timers

Android Clock App

2

• Alarm – alarm at certain (later)
time(s).

• World Clock – display real time in
multiple time zones

• Stopwatch – measure elapsed
time of an event

• Timer – count down time and
notify when count becomes zero

Motor/Light Control

3

• Servo motors – PWM signal
provides control signal

• DC motors – PWM signals control
power delivery

• RGB LEDs – PWM signals allow
dimming through current-mode
control

Methods from android.os.SystemClock

4

Standard C library’s <time.h> header file

5

Standard C library’s <time.h> header file: struct tm

6

Anatomy of a timer system

7

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software
Hardware

Applications
Operating System

Internal
External

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+1;

end
endmodule

...
timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

timer_tick:
ldr r0, count;
add r0, r0, #1
...

Anatomy of a timer system

8

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software
Hardware

Applications
Operating System

Internal
External

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+1;

end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

timer_tick:
ldr r0, count;
add r0, r0, #1
...

What do we really want from our timing subsystem?

9

• Wall clock date & time
• Date: Month, Day, Year
• Time: HH:MM:SS:mmm
• Provided by a “real-time clock” or RTC

• Alarm: do something (call code) at certain time later
• Later could be a delay from now (e.g. Δt)
• Later could be actual time (e.g. today at 3pm)

• Stopwatch: measure (elapsed) time of an event
• Instead of pushbuttons, could be function calls or
• Hardware signals outside the processor

• Timer – count down time and notify when count = 0
• Could invoke some code (e.g. a handler)
• Could take some action (e.g. set/clear an I/O line)

What do we really want from our timing subsystem?

10

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address
• Timer – count down time and notify when count = 0

• void timer(callback, delta)
• Timer fires à Set/Clear GPIO line (using DMA)

Wall Clock from a Real-Time Clock (RTC)

11

• Often a separate module
• Built with registers for

• Years, Months, Days
• Hours, Mins, Seconds

• Alarms: hour, min, day
• Accessed via

• Memory-mapped I/O
• Serial bus (I2C, SPI)

What do we really want from our timing subsystem?

12

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address
• Timer – count down time and notify when count = 0

• void timer(callback, delta)
• Timer fires à Set/Clear GPIO line (using DMA)

Anatomy of a timer system

13

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software
Hardware

Applications
Operating System

Internal
External

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+1;

end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

timer_tick:
ldr r0, count;
add r0, r0, #1
...

Oscillators – RC

14

Square Wave Oscillator

Oscillators – Crystal

15

Pierce Oscillator

Anatomy of a timer system

16

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software
Hardware

Applications
Operating System

Internal
External

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+1;

end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

timer_tick:
ldr r0, count;
add r0, r0, #1
...

What do we really want from our timing subsystem?

17

• Wall clock
• datetime_t getDateTime()

• Alarm
• void alarm(callback, delta)
• void alarm(callback, datetime_t)

• Stopwatch: measure (elapsed) time of an event
• t1 = now(); … ; t2 = now(); dt = difftime(t2, t1);
• GPIO_INT_ISR:

LDR R1, [R0, #0] % R0=timer address
• Timer – count down time and notify when count = 0

• void timer(callback, delta)
• Timer fires à Set/Clear GPIO line (using DMA)

• There are two basic activities one wants timers for:
– Measure how long something takes

•“Capture”
– Have something happen once or every X time period

•“Compare”

Why should we care?

• FAN
– Say you have a fan spinning and you want to know how fast it is

spinning. One way to do that is to have it throw an interrupt every
time it completes a rotation.
• Right idea, but might take a while to process the interrupt, heavily

loaded system might see slower fan than actually exists.
• This could be bad.

– Solution? Have the timer note immediately how long it took and then
generate the interrupt. Also restart timer immediately.

• Same issue would exist in a car when measuring speed of a
wheel turning (for speedometer or anti-lock brakes).

Example # 1: Capture

• Driving a DC motor via PWM.
– Motors turn at a speed determined by the voltage applied.

• Doing this in analog can be hard.
– Need to get analog out of our processor
– Need to amplify signal in a linear way (op-amp?)

• Generally prefer just switching between “Max” and “Off” quickly.
– Average is good enough.
– Now don’t need linear amplifier—just “on” and “off”. (transistor)

– Need a signal with a certain duty cycle and frequency.
• That is % of time high.

Example # 2: Compare

ATMEGA328P Timer System

Timer Resources

22

• 8-bit Timer/Counter 0
• 16-bit Timer/Counter 1
• 8-bit Timer/Counter 2

8-bit Timers

Modes of operation
• Overflow (reset at 0xFF)
• Capture (CTC)
• Fast PWM
• Phase-correct PWM

23

16-bit Timer

24

Modes of operation
• Overflow (reset at 0xFFFF)
• Capture

– CTC
– ICR

• Fast PWM
– 5 modes
– 8 to 16-bit resolution

• Phase-correct PWM
– 7 modes
– 8 to 16-bit resolution

Anatomy of a timer system

25

Prescaler

Counter

Clock Driver

Xtal/Osc

Compare Capture

Low-Level Timer Subsystem Device Drivers

Timer Abstractions and Virtualization

Application Software

Software
Hardware

Applications
Operating System

Internal
External

module timer(clr, ena, clk, alrm);
input clr, ena, clk;
output alrm;
reg alrm;
reg [3:0] count;

always @(posedge clk) begin
alrm <= 0;
if (clr) count <= 0;
else count <= count+1;

end
endmodule

timer_t timerX;
initTimer();
...
startTimerOneShot(timerX, 1024);
...
stopTimer(timerX);

I/O I/O

R/W R/W R/W

typedef struct timer {
timer_handler_t handler;
uint32_t time;
uint8_t mode;
timer_t* next_timer;

} timer_t;

timer_tick:
ldr r0, count;
add r0, r0, #1
...

• You never have enough timers.
– Never.

• So what are we going to do about it?
– How about we handle in software?

Virtual Timers

• Simple idea.
– Maybe we have 10 events we might want to generate.

•Just make a list of them and set the timer to go off for the
first one.

–Do that first task, change the timer to interrupt for the
next task.

Virtual Timers

• Only works for “compare” timer uses.
• Will result in slower ISR response time

– May not care, could just schedule sooner…

Problems?

• Shared user-space/ISR data structure.
– Insertion happens at least some of the time in user code.
– Deletion happens in ISR.

• We need critical section (disable interrupt)
• How do we deal with our modulo counter?

– That is, the timer wraps around.
– Why is that an issue?

• What functionality would be nice?
– Generally one-shot vs. repeating events
– Might be other things desired though

• What if two events are to happen at the same time?
– Pick an order, do both…

Implementation Issues

• What data structure?
– Data needs be sorted

•Inserting one thing at a time
– We always pop from one end
– But we add in sorted order.

Implementation Issues (continued)

Data structures

HW Timer

32

Hardware Timer

Count: -1

Interrupt

ISR

//Do Something

Program

//Setup Timer

Virtual Timer

33

Hardware Timer

Interrupt

Count: -1

Virtual ISR
//Figure out
source bl
bl
bl
bl
//Insert new
event?
//Set new time

Program 1
//Setup Timer @3
//Setup Timer @5

Program 2

//Setup Timer @D2

Program 3

//Setup Timer @D7

Program 4

//Setup Timer @4

Program 1-Handler
//Do Something

Program 2-Handler
//Do Something

Program 3-Handler
//Do Something

Program 4 -
Handler
//Do Something

Virtual Timer Code
//Update Event
Queue
//Adjust Timer if
needed

Virtual Event Queue

Acknowledgements

• These slides contain materials from Prabal Dutta, Mark Brehob and Thomas
Schmid (UMich)

34

