Clocks, Counters & Timers

Android Clock App

®© O

Alarm Clock Timer Stopwatch

8:30

Repeat

00000 -

@ Have a Great Day! Vibrate
[Good moming!

» Google Assistant Routine

Alarm — alarm at certain (later)
time(s).

World Clock — display real time in
multiple time zones

Stopwatch — measure elapsed
time of an event

Timer — count down time and
notify when count becomes zero

Motor/Light Control

e Servo motors — PWM signal
provides control signal

e DC motors — PWM signals control
power delivery

e RGB LEDs — PWM signals allow
dimming through current-mode
control

Methods from android.os.SystemClock

Public Methods

static long

static long

static long

static boolean

static void

static long

currentThreadTimeMillis ()
Returns milliseconds running in the current thread.

elapsedRealtime()
Returns milliseconds since boot, including time spent in sleep.

elapsedRealtimeNanos|()
Returns nanoseconds since boot, including time spent in sleep.

setCurrentTimeMillis (long millis)
Sets the current wall time, in milliseconds.

sleep (long ms)

Waits a given number of milliseconds (of uptimeMillis) before returning.
uptimeMillis ()

Returns milliseconds since boot, not counting time spent in deep sleep.

Standard C library’s <time.h> header file
Library Functions

Following are the functions defined in the header time.h:

S.N.

Function & Description

char *asctime(const struct tm “timeptr)
Returns a pointer to a string which represents the day and time of the structure timeptr.

clock_t clock({void)
Returns the processor clock time used since the beginning of an implementation-defined era
(normally the beginning of the program).

char *ctime(const time_t “timer)
Returns a string representing the localtime based on the argument timer.

double difftime(time_t time1, time_t time2)
Returns the difference of seconds between time1 and time2 (time1-time2).

struct tm *gmtime(const time_t *timer)
The value of timer is broken up into the structure tm and expressed in Coordinated Universal
Time (UTC) also known as Greenwich Mean Time (GMT).

struct tm “localtime(const time_t *timer)
The value of timer is broken up into the structure tm and expressed in the local time zone.

time_t mktime(struct tm “timeptr)
Converts the structure pointed to by timeptr into a time_t value according to the local time
zone.

size_t stritime(char *str, size_t maxsize, const char *format, const struct tm “timeptr)
Formats the time represented in the structure timeptr according to the formatting rules
defined in format and stored into str.

time_t time(time_t *timer)
Calculates the current calender time and encodes it into time_t format.

Standard C library’s <time.h> header file: struct tm

struct
int
int
int
int
int
int
int
int
int

tm {
tm_sec;
tm min;
tm_ hour;
tm mday;
tm_mon;
tm_year;
tm wday;
tm yday;
tm_ isdst;

/*
/*
/*
/*
/*
/*
/*
/*
/*

seconds, range 0 to 59
minutes, range 0 to 59

hours, range 0 to 23

day of the month, range 1 to 31
month, range 0 to 11

The number of years since 1900
day of the week, range 0 to 6
day in the year, range 0 to 365
daylight saving time

*/
*/
*/
*/
*/
*/
*/
*/
*/

Anatomy of a timer system

timer t timerX;
initTimer() ;

Application Software startTimeroneShot (timerX, 1024);
Appl-lcat-lons stopTimer (timerX) ;
Operat]ng System typedef struct timer ({

timer handler t handler;
Timer Abstractions and Virtualization A e

timer:t* next timer;
} timer_ t;

timer_ tick:

Low-Level Timer Subsystem Device Drivers ldr x0, count;
add r0, r0, #1

Software
R/W RAW R7W
Hardware
Compare <—7L Counter ﬁL) Capture [€] module timer(clr, ena, clk, alrm);
input clr, ena, clk;
T output alrm;
reg alrm;
reg [3:0] count;
Prescaler always @ (posedge clk) begin
alrm <= 0
T if (clr) count <= 0;
else count <= count+l;
end
Clock Driver sndmodute

Internal g
External %' [|:| ’ v
Xtal/Osc ~S N ‘

Anatomy of a timer system

timer t timerX;
initTimer () ;

Application Software startTimeroneShot (timerX, 1024);
Applications T stopTimer (timerX) ;

What do we really want from our timing subsystem?

e Wall clock date & time
e Date: Month, Day, Year
e Time: HH:MM:SS:mmm
e Provided by a “real-time clock” or RTC

e Alarm: do something (call code) at certain time later
e Later could be a delay from now (e.g. At)
e Later could be actual time (e.g. today at 3pm)

e Stopwatch: measure (elapsed) time of an event
e |nstead of pushbuttons, could be function calls or
e Hardware signals outside the processor

e Timer — count down time and notify when count =0
e Could invoke some code (e.g. a handler)
e Could take some action (e.g. set/clear an I/O line)

What do we really want from our timing subsystem?

e Wall clock
e datetime_t getDateTime()
e Alarm
e void alarm(callback, delta)
e void alarm(callback, datetime _t)

e Stopwatch: measure (elapsed) time of an event
e t1 =now(); ...; t2 = now(); dt = difftime(t2, t1);
e GPIO_INT_ISR:
LDR R1, [RO, #0] % RO=timer address
e Timer —count down time and notify when count =0
e void timer(callback, delta)
e Timer fires = Set/Clear GPIO line (using DMA)

10

Wall Clock from a Real-Time Clock (RTC)

INT

SO (O - = e (Often a separate module
“ES el e Built with registers for
T [o s e Years, Months, Days

L | e |9 e Hours, Mins, Seconds
SSE% 8 _ Serial bus Dey slorm 8 .

S N PPV N e | e Alarms: hour, min, day

[t'ﬁ ""‘*;} F e Accessed via

e Memory-mapped I/O

[SpA <] .
e Serial bus (12C, SPI)
INTERFACE [* » RTC ’
ol [scL A SORTEOL o|| minuTES
BUFFER bl
HOURS
. DAY OF WEEK
Xt CRYSTAL | rrc " —
- | osciLLATOR » DIVIDER »
MONTH
v A v
DD » POR FREQUENCY VEAR
i ALARM
- CONTROL
VIRIP /s REGISTERS
@ SWITCH USER
T L - T \ SRAM
Vi . INTERNAL » RO
SUPPLY) our

What do we really want from our timing subsystem?

e Wall clock
e datetime t getDateTime()
e Alarm
e void alarm(callback, delta)
e void alarm(callback, datetime_t)

e Stopwatch: measure (elapsed) time of an event
e t1 =now(); ...; t2 = now(); dt = difftime(t2, t1);
e GPIO INT ISR:
LDR R1, [RO, #0] % RO=timer address
e Timer — count down time and notify when count =0
e void timer(callback, delta)
e Timer fires =2 Set/Clear GPIO line (using DMA)

12

Anatomy of a timer system

Externaly® '-L' """""""""""""""""""""""
Xtal/Osc —ITI

Oscillators - RC

Rr Square Wave Oscillator
(1k0 -100k0)
+9v
Symmetrical
3'OV/\/\ 10k _D_ Output
2.2V ' mark space
Capacitor B e % 40106B L |
Waveform ——
(1 pF - 0 ——
100uF) oy 11
3 O - > |a—7p

Oscillators - Crystal

R: = TMO
A \ Schmitt
Jﬁvf Inverter
Vij Vig o
§R;.- Square
= fmz C R; Wave
I[II 5 33pF Ska | =
I 1! 10 22pF 1kQ
- X —C | 15 15F 5000
. . 20 10pF 2700

Pierce Oscillator

Ci 30pF

A —
1-20MHz |

»

C, 30pF

ascCi

CPU
Microprocessor

asC2

Anatomy of a timer system

IAVAR A nN7vy 7 VY
Hardware \1: ‘1: ‘1:
Compare + Counter % Capture 6 module timer (clr, ena, clk, alrm);

input clr, ena, clk;
T output alrm;
reg alrm;
reg [3:0] count;
Prescaler always @ (posedge clk) begin

alrm <= 0
if (clr) count <= 0;
else count <= count+l;

end

IJ_I_ Clock Driver <|1| endmodule
Internal 4 A L

What do we really want from our timing subsystem?

e Stopwatch: measure (elapsed) time of an event
e t1 =now(); ...; t2 = now(); dt = difftime(t2, t1);
e GPIO_INT_ISR:
LDR R1, [RO, #0] % RO=timer address
e Timer — count down time and notify when count =0
e void timer(callback, delta)
e Timer fires 2 Set/Clear GPIO line (using DMA)

Why should we care?

e There are two basic activities one wants timers for:
— Measure how long something takes

e “Capture”
— Have something happen once or every X time period

11 7
e Compare

Example # 1: Capture

* FAN

— Say you have a fan spinning and you want to know how fast it is
spinning. One way to do that is to have it throw an interrupt every
time it completes a rotation.

* Right idea, but might take a while to process the interrupt, heavily
loaded system might see slower fan than actually exists.

* This could be bad.

— Solution? Have the timer note immediately how long it took and then
generate the interrupt. Also restart timer immediately.

 Same issue would exist in a car when measuring speed of a
wheel turning (for speedometer or anti-lock brakes).

Example # 2: Compare

e Driving a DC motor via PWM.

— Motors turn at a speed determined by the voltage applied.

e Doing this in analog can be hard.
— Need to get analog out of our processor
— Need to amplify signal in a linear way (op-amp?)
e Generally prefer just switching between “Max” and “Off” quickly.
— Average is good enough.
— Now don’ t need linear amplifier—just “on” and “off”. (transistor)

— Need a signal with a certain duty cycle and frequency.
e That is % of time high.

ATMEGA328P Timer System

GND VCC

Timer Resources] I $ ___________ ,

RESET

| |
|
; Warehdog L —wt Power debugWIRE |
I Supervision |
| A POR/ BOD - |
I and |
Watchdog _»| RESET Program |
! Oscillator Logic
° ° 1 !
| |
e 8-bit Timer/Counter 0 . ! .
! Oscillator !
' y| Circuits/ Flash SRAM '
. - ! ™ Clock :
e 16-bit Timer/Counter 1 | B i i '
I |
I |
! AVR cru !
[] [] | A |
e 8-bit Timer/Counter 2 ' '
I * :
I Y ————————T—— AvVCC
I > |
| y | AREF
: Y ,—:— GND
I 8-bit T/C 0 16-bit T/C 1 AID Conv. |3
|
| } A {
g
! o||. B) Internal 6
| < | [+ sbitTIc2 Bandgap
| <<
a
|
| L
|
; USART 0 SPI T™WI
I [} T i)
I
|
I
|
|
|
|
|
|
|
|
I

XTAL[1..2]

PD[0..7] PB[0..7] PC[0.6] ADC6..7]

8-bit Timers

Modes of operation

e Overflow (reset at OxFF)

e Capture (CTC)

Fast PWM
Phase-correct PWM

DATA BUS

» TOVn (Int. Req.)

Count
Clear . Clock Select
—— Control Logic
Direction Edge
- Clkgy] Detector Tn
TOP | BOTTOM KI (from Prescaler)
YVvVY
Timer/Counter A
-y TCNTn
— — 0
* ; * |—> OCnA (Int. Req.)
Y |
]
— ‘ - Waveform L o ocnA
1 Q Generation
- OCRnA el ittt 4 :
Fixed
TOP
* Value — OCnB (Int. Req.)
— Waveform OCnB
? Generation
P OCRnNB
P TCCRNA TCCRnNnB

» TOVn (Int. Req.)

16-bit Timer Count

D‘Cleir Control Logic Clock Select
- clkTp (Dst(:egc?or - n
i -
‘TOP “BOTTOM K (from Prescaler)
Modes of operation . 111 AR
e Overflow (reset at OxFFFF) ‘+ o - = o
L Capture ' * ? * — OCnA (Int. Req.)
- CTC = i - Navefom ~ ocnA
: —
. Fast PWM N | s
) 'l ToP — OCnB (Int. Req.)
- 5 mOdeS 2 * : Values
- : < = i ~| Generation > OCnB
- 8 to 16-bit resolution S] :
e Phase-correct PWM > ===~~~ OGRng ------ o Fomandog
_ 7 mOdeS : — ICFn (Int. Req.)
. : P ICtn - : Edge - Noise J
- 8 to 16-bit resolution — 1 Detector Canceler <« icpn
TCCRnA TCCRnB
P ‘.

Anatomy of a timer system

Operat]ng System ¢ typedef struct timer ({

timer handler t handler;

uint32_t time;

Timer Abstractions and Virtualization uint8 T mode;

timer t* next_ timer;
} timer_ t;

Virtual Timers

* You never have enough timers.

—Never.

e So what are we going to do about it?

—How about we handle in software?

Virtual Timers

e Simple idea.
— Maybe we have 10 events we might want to generate.

e Just make a list of them and set the timer to go off for the
first one.

—Do that first task, change the timer to interrupt for the
next task.

Problems?

e Only works for “compare” timer uses.
e Will result in slower ISR response time

— May not care, could just schedule sooner...

Implementation Issues

e Shared user-space/ISR data structure.
— |Insertion happens at least some of the time in user code.

— Deletion happens in ISR.
e We need critical section (disable interrupt)

e How do we deal with our modulo counter?
—That is, the timer wraps around.
— Why is that an issue?
e What functionality would be nice?
— Generally one-shot vs. repeating events
— Might be other things desired though
e What if two events are to happen at the same time?
— Pick an order, do both...

Implementation Issues (continued)

e \What data structure?

— Data needs be sorted

e |nserting one thing at a time
— We always pop from one end
— But we add in sorted order.

Data structures

typedef struct timer
{

timer handler t handler;

uint32 t time;
u1nt8_t mode;
timer t* next timer;

} timer t;
timer t* current timer;

void initTimer () {
setupHardwareTimer () ;
initLinkedList () ;
current timer = NULL;

}

error t startTimerOneShot (timer handler t handler, uint32 t t) {
/7 add handler to linked list and sort it by time
// 1if this is first element, start hardware timer

}

error t startTimerContinuous (timer handler t handler, uint32 t dt) {
// add handler to linked 1list for (now+dt) set mode to continuous
// 1if this is first element, start hardware timer

}

error t stopTimer (timer handler t handler) {
// find element for handler and remove it from list

}

HW Timer

Program
//Setup Timer

1S

//Do Something

32

Virtual Timer

Program 1
//Setup Timer @3

{Virtual Event Queue

Setup Timer @5 —
//Setup ~

Program 2

//Setup Timer @DZV’

Program 3

//Setup Timer @D7

//Do Something

4
|
Virtual Timer Code I
//Update Event |
|
//Adjust Timer if - I
needed , |
Program 1-Handler Virtual ISR |
//Do Something //Figure oul |
bl
Program 2-Handler \.;cl)urce I
//Do Something L I
Program 3-Handler bl |
//Do Something A //Insert new I
event? |
//Set new time ,

Acknowledgements

o These slides contain materials from Prabal Dutta, Mark Brehob and Thomas
Schmid (UMich)

